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Abstract
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even without distributional concerns. We quantitatively extend this result to an empiri-

cal model of selection into college for the United States that comprises multidimensional
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tain returns. Optimal �nancial aid is strongly declining in parental income even without
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1 Introduction

In all OECD countries, college students bene�t from �nancial support (OECD, 2014). More-

over, with the goal of guaranteeing equality of opportunity, �nancial aid is typically need-

based and targeted speci�cally to students with low parental income. In the United States,

the largest need-based program is the Pell Grant. Federal spending on this program exceeded

$30 billion in 2015 and has grown by over 80% during the last 10 years (College Board, 2015).

One justi�cation for student �nancial aid in the policy debate is that the social returns to

college exceed the private returns because the government receives a share of the �nancial

returns through higher tax revenue (Carroll and Erkut, 2009; Baum et al., 2013). This lowers

the e�ective �scal costs (i.e., net of tax revenue increases) of student �nancial aid.1

In this paper, we study the optimal design of �nancial aid and show that considering

dynamic scoring aspects is crucial to assessing the desirability of need-based programs such

as the Pell Grant. The reduction in the e�ective �scal costs of student �nancial aid due to

dynamic �scal e�ects varies along the parental income distribution. We show that e�ective

�scal costs are increasing in parental income and are therefore lowest for those children that

are targeted by the Pell Grant. The policy implication is that need-based �nancial aid is

desirable not only because it promotes intergenerational mobility and equality of opportunity.

Need-based �nancial aid is also desirable from an e�ciency point of view because subsidizing

the college education of children from weak parental backgrounds is cheaper for society than

subsidizing students from "average" parental backgrounds. The usual equity-e�ciency trade-

o� does not apply for need-based �nancial aid.

To arrive there, we start with a general model without imposing restrictions on the under-

lying heterogeneity in the population. Further, besides enrollment, labor supply and savings

decisions, we consider dropout, labor supply during college and endogenous parental trans-

fers. We derive a simple optimality condition for �nancial aid that transparently highlights

the key trade-o�s. At a given level of parental income, optimal �nancial aid decreases in the

share of inframarginal students, which captures the marginal costs. These costs are scaled

down by the marginal social welfare weights attached to these students. Optimal �nancial aid

increases in the share of marginal students2 and the �scal externality per marginal student,

which jointly capture the marginal bene�ts of the subsidy. The �scal externality is the change

in lifetime �scal contributions causal to college attendance.3 For the optimality condition, the

1The Congressional Budget O�ce (CBO), following a request by the Senate Committee on the Budget,
recently documented the growth in the �scal costs of Pell Grant spending (Alsalam, 2013). Dynamic scoring
aspects are neglected in this report: the positive �scal e�ects through higher tax revenue in the future are
not taken into account. Generally, the CBO does consider issues of dynamic scoring: https://www.cbo.gov/
publication/50919.

2Those students that are at the margin of attending college with respect to �nancial aid.
3On top of that, �nancial aid is also increasing in the completion elasticity with respect to �nancial aid

and the �scal externality due to completing college instead of dropping out. This channel, however, turns out
to be quantiatively of minor importance.
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speci�c reason why marginal students change their behavior due to a change in subsidies (e.g.,

borrowing constraints or preferences) is not important.

Elasticities linking changes in enrollment behavior to changes in �nancial aid have been

estimated in the literature (e.g., by Dynarski (2003) and Castleman and Long (2016)). These

papers provide guidance about the average value of this policy elasticity or about its value at

a particular parental income level. However, knowledge about how this elasticity varies along

the parental income distribution is missing. Knowledge of those parameters for students from

di�erent parental income groups, however, is necessary to analyze the welfare e�ects of need-

based �nancial aid. Further, these elasticities are not deep parameters but do change as policy

changes. The main approach of this paper is therefore a structural model of selection into

college that allows us to compute this policy elasticity along the parental income distribution

and for alternative policies.

As a �rst step, however, before studying this empirical model, we consider a simple theo-

retical setting. We reduce the complexity of the problem by focusing on two dimensions of

heterogeneity: (i) parental transfers and (ii) returns to college. Further, we simplify the model

by making the problem static, shutting down risk, labor supply during college and dropout.

We �rst show that �nancial aid is decreasing in parental income even in the absence of dis-

tributional concerns if the distribution of returns is log concave (which implies a decreasing

hazard rate)4 and if returns and parental income are independently distributed. We then

show that these analytical results extend to the empirically more plausible case of a positive

association between parental income and child ability.5

We then move to our structural life-cycle model, where we account for earnings risk,

dropout, labor supply during college and, importantly, we account for crowd-out of parental

transfers by explicitly modeling parental decisions to save, consume and provide transfers

to their children. Another additional crucial ingredient of the model is heterogeneity in the

psychic costs of education because monetary returns can only account for a small part of the

observed college attendance patterns (Heckman et al., 2006). Using data from the National

Longitudinal Survey of Youth 1979 and 1997, we estimate the parameters of our model via

maximum likelihood and provide a detailed discussion of how variation in the data helps us

to identify the crucial parameters.

We �nd that optimal �nancial aid policies are strongly progressive. In our preferred speci�-

cation, the level of �nancial aid drops by 48% moving from the 25th percentile of the parental

income distribution to the 75th percentile. The strong progressivity result does not rely on

the Utilitarian welfare criterion. We show that a social planner that sets equal social wel-

fare weights on all students or is only interested in maximizing tax revenues would choose

4The hazard rate pins down the ratio of marginal over inframarginal students which is also key in this
simpli�ed model.

5We obtain this clear analytical result if the ability distribution of high parental income children dominates
the distribution of low parental income children in the hazard rate order. For a Pareto distribution, e.g., the
property of hazard rate dominance always holds in case of �rst-order stochastic dominance.
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an almost equally progressive �nancial aid schedule. Second, our estimates suggest that tar-

geted increases in �nancial aid for students below the 59th percentile of the parental income

distribution, are self-�nancing by increases in future tax revenue; this implies that targeted

�nancial aid expansions could be free-lunch policies. Both results point out that �nancial aid

policies for students are a rare case in which there is no equity-e�ciency trade-o�.

In a last step, we provide several extensions and robustness checks. We show that our pro-

gressivity result also holds if we (i) remove borrowing constraints, (ii) choose the merit-based

dimension of �nancial aid optimally, (iii) allow the government to set an optimal Mirrleesian

income tax schedule, (iv) model early educational investments and thereby endogenize ability

and (v) if the relative wage for college educated labor is determined in general equilibrium.

Our paper contributes to the existing literature in several ways. Stantcheva (2017) char-

acterizes optimal human capital policies in a very general dynamic model with continuous

education choices. The main di�erences with our approach are twofold. First, theoretically,

we study a model with discrete education choices as we �nd this a natural way to study �nan-

cial aid policies. As we show, the optimality conditions are quite distinct from the continuous

case and di�erent elasticities are required to characterize the optimum. Second, the extensive

margin education decision allows us to incorporate a large degree of heterogeneity without

making the optimal policy problem intractable. This allows for a modeling approach that is

close to the empirical, structural literature.

Bovenberg and Jacobs (2005) consider a static model with a continuous education choice

and derive a �siamese twins� result: they �nd that the optimal marginal education subsidy

should be as high as the optimal marginal income tax rate, thereby fully o�setting the dis-

tortions from the income tax on the human capital margin.6 Lawson (2017) uses an elasticity

approach to characterize optimal uniform tuition subsidies for all college students.7 Jacobs and

Thuemmel (2018) study the role of skill-biased technical change for optimal college subsidies

and income taxation. We contribute to this line of research by developing a new framework to

analyze how education policies should depend on parents' resources and also trade o� merit-

based concerns. Our theoretical characterization of optimal �nancial aid (and tax policies)

allows for a large amount of heterogeneity, and we tightly connect our theory directly to the

data by estimating the relevant parameters ourselves. Finally, the paper is also related to

many empirical papers, from which we take the evidence to gauge the performance of the

estimated model. These papers are mentioned in Section 4.

6Bohacek and Kapicka (2008) derive a similar result as in a dynamic deterministic environment. Findeisen
and Sachs (2016), focus on history-dependent policies and show how history-dependent labor wedges can be
implemented with an income-contingent college loan system. Koeniger and Prat (2017) study optimal history-
dependent human capital policies in a dynastic economy where education policies also depend on parental
background. Stantcheva (2015) derives education and tax policies in a dynastic model with multi-dimensional
heterogeneity, characterizing the relationship between education and bequest policies.

7Our work is also complementary to Abbott et al. (2018) and Krueger and Ludwig (2013, 2016), who study
education policies computationally in very rich overlapping-generations models.

3



We progress as follows. In Section 2 we develop the general model and characterize the

optimal policies in terms of reduced-form objects. In Section 3 we consider a simpli�ed version

of the model, which allows us to transparently study mild conditions on primitives under

which �nancial aid is optimally decreasing in parental income. In Section 4 we specify our

quantitative model as a special case of the general model presented in Section 2 and present

our estimation approach. Section 5 presents optimal �nancial aid policies, and Section 6

decomposes the forces which lead to an optimal �nancial aid schedule. In Section 7 we discuss

further robustness issues. Section 8 concludes.

2 Optimal Financial Aid Policies

In this section we characterize optimal (need-based) �nancial aid policies for college students.

Our approach is to work with a general model and characterize the optimal �nancial aid in

terms of reduced-form objects. This formula is general on the one hand and economically

intuitive on the other hand. It clearly highlights the role of the �scal externality as a reason

for why education is subsidized (Bovenberg and Jacobs 2005). The �scal externality arises

through the tax-transfer system: if college increases human capital and therefore earnings,

college education implies a �scal externality since the individual will pay more taxes. Hence,

if the government imposed lump sum taxes that were independent of earnings, there would be

no �scal externality. In Section 4, we explore the quantitative implications of this optimality

condition in a fully speci�ed structural empirical model, which is a special case of the model

analyzed in Section 2. As an intermediate step, we theoretically explore a simpli�ed framework

in Section 3, for which we can derive conditions on primitives that imply that optimal �nancial

aid is indeed need-based, i.e., that �nancial aid is decreasing in parental income, even in the

absence of distributional concerns.

2.1 Individual Problem

Individuals start life in year t = 0 as high school graduates and are characterized by a vector

of characteristics X ∈ χ and (permanent) parental income I ∈ R+. Life lasts T periods and

individuals face the following decisions. At the beginning of the model, they face a binary

choice: enrolling in college or not. If individuals decide against enrollment, they directly enter

the labor market and make labor-leisure decisions every period. If individuals decide to enroll

in college, they also make a labor-leisure decision during college and, at the beginning of the

year, decide to drop out or continue. After graduating or dropping out, individuals enter the

labor market.

We start by considering labor market decisions of individuals that either are out of college

or have chosen to forgo college altogether. This is a standard labor-leisure-savings problem
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with incomplete markets. Let V W
t (·) denote the value function of an individual in the labor

market in year t. Then the recursive problem is given by

V W
t (X, I, e, at, wt) = max

ct,`t
U(ct, `t) + βE

[
V W
t+1(X, I, e, at+t, wt+1)|wt

]
subject to the budget constraint

ct + at+1 = `twt − T (`twt) + at(1 + r) + trt(X, I, e, wt).

The state variables are the initial characteristics (X, I), the education level e ∈ {H,D,G}
(high school graduate, college dropout, college graduate), assets at, and the current wage

wt. The variables (X, I, e) are state variables because they may a�ect parental transfers

trt(X, I, e, wt) and because they may a�ect the evolution of future wages. The dependence

on the education decision then captures the returns to education. The function T captures

the tax-transfer system. Finally, we assume that the utility function is such that there are

no income e�ects on labor supply. Given those value functions, we now turn to the value

functions of the di�erent education decisions. The value of not enrolling in college (i.e.,

choosing education level H) is simply given by

V H(X, I) =E
[
V W

1 (X, I, e = H, a1 = 0, w1)
]
.

Regarding the realization of uncertainty, the timing is such that individuals directly enter the

labor market in period one and draw their �rst wage w1, which is hence only known after the

education decision has been made. Next, we turn to the decisions during college. Besides the

question of how much to work and consume while in college, individuals also make the binary

decision of dropping out or staying enrolled.

The value function of a college student at age t is given by

V E
t (X, I, at, εt) = max[V ND

t (X, I, at, εt), V
D
t (X, I, at, εt)]

where V D(·) is the value function associated with dropping out, V ND
t (·) denotes the value

function of staying enrolled (not dropping out), and εt is a vector of preference shocks. Agents

who drop out of college enter the labor force and may also pay a psychic cost associated with

dropping out. The value of dropping out is therefore given by:

V D
t (X, I, at) =E

[
V W
t (X, I, e = D, at, wt)

]
− d (εt)

where d (εt) represents the psychic cost of dropping out.

The value function for staying enrolled is a bit more complex and given by:
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V ND
t (X, I, at, εt) = max

ct,`Et

[UE
(
ct, `

E
t ;X, εt

)
+

β
{(

1− PrGradt (X)
)
× E

[
V E
t+1 (X, I, at+1, εt+1)

]
+ PrGradt (X)× E

[
V W
t+1 (X, I, e = G, at+1, wt+1)

]}
subject to

ct = `Et ω + at (1 + r (at, I))− at+1 −F(X) + G (X, I) + trEt (X, I,G(X, I))

and

at+1 ≥ āEt+1.

w is the wage that students earn if they work during college and F(X) is tuition. Tuition might

vary by X because of regional di�erences in college tuition, for example. We denote work in

college by `Et .
8 The term G(X, I) is the amount of �nancial aid a student with characteristics

X and parental income I receives, and trEt (X, I,G(X, I)) captures parental transfers in year

t for children that are enrolled in college. They are endogenous with respect to the level of

�nancial aid to account for the potential crowding out of parental transfers through �nancial

aid. PrGradt (X) is a stochastic graduation probability which can depend on the vector X.

We allow the interest rate for college enrollees to vary by the agent's asset position (positive

or negative) and by the agent's parental income. We denote �ow utility while enrolled in

college by UE(ct, `
E
t ;X, εt). Importantly, this �ow utility may include the psychic costs and

nonpecuniary bene�ts of college attendance, in addition to �ow utility from consumption and

labor supply. These psychic costs have been found to be important in explaining college en-

rollment patterns.9 The �ow utility in college can depend directly on personal characteristics,

X, allowing these psychic costs of college to vary with the individual's characteristics. Note

that the vector of personal characteristics, X, may also include idiosyncratic preferences for

enrolling in college.

Finally we denote the value of enrolling into college in the �rst place as

V E(X, I) = E
[
V E

1 (X, I, a1 = 0, ε1)
]

+ υ(X),

where υ(X) is a function that gives any additional nonpecunairy bene�ts of enrolling in college

for agents with characteristics X. An individual enrolls in college if V E(X, I) ≥ V H(X, I).

Denote by PD
t (X, I,G(X, I)) the share of individuals of type (X, I) that drop out in period

t. Importantly the model captures the idea that the dropout decision is endogenous with

8We assume these earnings are not taxed. In the data, the average earnings of students who work in
college are so low that they do not have to pay positive income taxes; in addition, the vast majority of college
students does not qualify for welfare/transfer programs.

9See Cunha et al. (2005), Heckman et al. (2006) or Heckman and Navarro (2007).
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respect to �nancial aid. Further, denote by PE
t (X, I,G(X, I)) =

∏t
s=1(1−PD

s (X, I,G(X, I))×∏t−1
s=1

(
1− PrGrads (X)

)
the proportion of all initially enrolled students that are enrolled in

period t. Finally, we denote the proportion of initially enrolled students that successfully

complete college by PC(X, I,G(X, I)) =
∑tmaxg

t=1 PE
t (X, I,G(X, I))PrGradt (X). We move to the

policy analysis and for the remainder of the section make three simplifying assumption for the

purpose of simpler notation. We assume that individuals can only drop out after two years

in college such that PD
t (X, I,G(X, I)) = 0 if t 6= 3 and cannot graduate before year t = 3,

i.e. PrGradt (X) = 0 for t = 1, 2.10 Finally, we assume that �nancial aid only depends only on

parental income, and not on other characteristics, X. We therefore write �nancial aid as G(I)

for the remainder of this section.11

2.2 Fiscal Contributions

We now de�ne the expected net �scal contributions for di�erent types (X, I) and di�erent

education levels as these will be key ingredients for the policy analysis. We start with the net

present value (NPV) in net tax revenues of high school graduates of type (X, I):

NT HNPV (X, I) =
T∑
t=1

(
1

1 + r

)t−1

E (T (yt)|X, I,H) ,

where yt = wt`t is total earnings in year t.

The �scal contribution of a dropout is given by their net present value of tax payments

minus grants received:

NT DNPV (X, I) =
T∑
t=3

(
1

1 + r

)t−1

E (T (yt)|X, I,D)− G(I)
2∑
t=1

(
1

1 + r

)t−1

.

Finally, we turn to students that do not dropout but graduate. The average �scal contri-

bution of graduates of type (X, I) is given by:

NT GNPV (X, I) =
1∑tmaxg

g=3 P
E
g (X, I,G(I))PrGradg (X)

tmaxg∑
g=3

PE
g (X, I,G(I))PrGradg (X)

[
T∑

t=g+1

(
1

1 + r

)t−1

E (T (yt)|X, I,G)− G(I)

g∑
t=1

(
1

1 + r

)t−1
]

10We provide the optimal policy formulas without these simplifying assumptions in Appendix A.2. The
intuition of these formulas are the same but the notation is considerably more cumbersome.

11We allow for other characteristics to enter the �nancial aid formula in the quantitative version of the
model in Section 4. We show that our main result also extends to the case in which the merit-based elements
are chosen optimally in Appendix C.10.
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where tmaxg is the latest possible graduation date. Finally, we de�ne the expected �scal con-

tribution of an individual that decides to enroll:

NT ENPV (X, I) = PC(X, I,G(I))×NT GNPV (X, I) + (1− PC(X, I,G(I)))×NT DNPV (X, I).

Before we derive optimal education subsidies, we ease the upcoming notation a little bit.

Let a type (X, I) be labeled by j and de�ne the enrollment share for income level I:

E(I) =

∫
χ

1V Ej ≥V Hj h(X|I)dX,

where 1V Ej ≥V Hj is an indicator function capturing the education choice for each type j = (X, I).

Next, we de�ne the completion rate by

C(I) =

∫
χ
1V Ej ≥V Hj P

C(X, I,G(I))h(X|I)dX

E(I)
,

which captures the share of enrolled students of parental income level I that actually graduate.

We assume that these shares, as well as the probabilities of dropping out, PD
t (X, I,G(I)), are

di�erentiable in the level of �nancial aid.

2.3 Government Problem and Optimal Policies

We now characterize the optimal �nancial aid schedule G(I). We denote by F (I) the un-

conditional parental income CDF, by K(X, I) the joint CDF and by H(X|I) the conditional

one; the densities are f(I), k(X, I), and h(X|I), respectively. The government assigns Pareto

weights k̃(X, I) = f̃(I)h̃(X|I), which are normalized to integrate up to one.

Importantly, we assume that the government takes the tax-transfer system T (·) as given

and consider the optimal budget-neutral reform of G(I). Whereas the tax-transfer system is

not changed if �nancial aid is reformed, a change in the �nancial aid schedule changes the size

and the composition of the set of individuals that go to college. This implies a change in tax

revenue and transfer spending that directly feeds back into the available resource for �nancial

aid.12 Taking the tax-transfer system as given, the problem of the government is

max
G(I)

∫
R+

∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI (1)

subject to the net present value government budget constraint:

12We consider this as the more policy-relevant exercise than considering the joint optimal choice of T (·) and
G(I). Nevertheless, to complete the picture, in Appendix C.9, we consider the joint optimal design of �nancial
aid G(I) and the tax-transfer system T (·). Further, we also explore jointly optimal merit and need-based
�nancial aid in Appendix C.10.
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∫
R+

∫
χ

NT HNPV (X, I)1V Ej <V Hj k(X, I)dXdI

+

∫
R+

∫
χ

NT GNPV (X, I)1V Ej ≥V Hj P
C(X, I,G(I))k(X, I)dXdI

+

∫
R+

∫
χ

NT DNPV (X, I)1V Ej ≥V Hj

(
1− PC(X, I,G(I))

)
k(X, I)dXdI ≥ F̄ , (2)

The term F̄ captures exogenous revenue requirements (e.g. spending on public goods) and

exogenous revenue sources (e.g. tax revenue from older cohorts). Hence, F̄ < 0 could capture

that the cohort for which we are reforming the �nancial aid schedule is e�ectively subsidized

from other cohorts. Now we consider a marginal increase in G(I). As we show in Appendix A.1,

it has the following impact on welfare:

∂E(I)

∂G(I)
×∆T E(I)︸ ︷︷ ︸

Enrollment E�ect

+
∂C(I)

∂G(I)

∣∣∣∣∣
E(I)

× E(I)×∆T C(I)︸ ︷︷ ︸
Completion E�ect

− Ẽ(I)
(
1−WE(I)

)︸ ︷︷ ︸
Mechanical E�ect

= 0. (3)

The �rst two terms of (3) capture behavioral e�ects (i.e., changes in welfare that are due to

individuals changing their behavior). The third term captures the mechanical welfare e�ect

(i.e. the welfare e�ect that would occur for �xed behavior). We start with the latter.

The mechanical e�ect captures the direct welfare impact of the grant increase to infra-

marginal students. The more students are inframarginal in their decision to go to college and

the more of them do not drop out, the higher are the immediate costs of the grant increase.

The term Ẽ(I) is the total discounted years of college attendance of income group I and is

de�ned as

Ẽ(I) =

∫
χ

1V Ej ≥V Hj

tmaxg∑
t=1

(
1

1 + r

)t−1

PE
t (X, I,G(I))

h(X|I)dX.

This captures the direct marginal �scal costs of the grant increase. Since the utility of these

students is valued by the government, the costs have to be scaled down by a social marginal

welfare weight (Saez and Stantcheva, 2016). We denote average social marginal welfare weight

of inframarginal students with parental income I by WE(I). Formally it is given by

WE(I) =∫
χ
1V Ej ≥V Hj E

[∑tmaxg

t=1 βt−1UE
c (·)

(
1 +

∂trEt (·)
∂G(I)

)∏t
s=1(1V NDs ≥V Ds )

∏t−1
s=1

(
1− PrGrads (X)

)]
h̃(X|I)dX

ρf(I)

f̃(I)
Ẽ(I)

,
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where ρ is the marginal value of public funds, UE
c is the marginal utility of consumption,

and 1V NDs ≥V Ds is an indicator for an individual choosing not to drop out of college in year

s. Thus, WE(I) is a money-metric (appropriately weighted) average marginal social welfare

weight. One di�erence from the standard concept applies here, however. One has to correct

for the implied reduction in parental transfers that accompanies an increase in resources

for college students. For each marginal dollar of additional grants, students only have a

change in consumption that is given by
(

1 +
∂trEt (X,I,G(I))

∂G(I)

)
. Ceteris paribus, the stronger the

crowding out of transfers, the lower are these welfare weights since fewer of the additional

grants e�ectively reach students.13

We now turn to the behavioral welfare e�ects in the �rst line of (3). The �rst term captures

the change in tax revenues due to an increase in enrollment and ∂E(I)
∂G(I)

captures the additional

enrollees. Since these individuals are marginal in their enrollment decision, this change in their

decision has no �rst-order e�ect on their utility. Therefore, we only have to track the e�ect

on welfare through the e�ect on public funds. The term ∆T E(I) captures the the average

increase in the NPV of net tax revenues for these marginal enrollees. Formally, it is given by

∆T E(I) =

∫
χ
1Hj→Ej∆T E(X, I) h(X|I)dX∫

χ
1Hj→Ej h(X|I)dX

, (4)

where 1Hj→Ej takes the value one if an individual of type j is marginal in her college en-

rollment decision with respect to a small increase in �nancial aid. By de�nition we have∫
χ
1Hj→Ejh(X|I)dX = ∂E(I)

∂G(I)
. ∆T E(X, I) is the (expected) �scal externality of an individual

of type (X, I): ∆T E(X, I) = NT ENPV (X, I)−NT HNPV (X, I).

There is a second behavioral e�ect due to endogenous college dropout. This second term

in (3) captures the increase in tax revenue due to an increase in the completion rate of the

inframarginal enrollees. The term ∂C(I)
∂G(I)

∣∣∣
E(I)

is the partial derivative of completion w.r.t.

�nancial aid, holding E(I) constant. Therefore, the term ∂C(I)
∂G(I)

∣∣∣
E(I)
× E(I) captures the

amount of inframarginal enrollees who did not graduate in the absence of the grant increase

but graduate now. Again, the envelope theorem applies and the change in their behavior has

no �rst-order e�ect on their utility. However, there is a welfare e�ect through the change

in public funds. ∆T C(I) captures the implied change in net �scal contributions through the

increased completion rate:

∆T C(I) =

∫
χ

∆T C(X, I)∂P
C(X,I,G(I))
∂G(I)

h(X|I)dX∫
χ
∂PC(X,I,G(I))

∂G(I)
h(X|I)dX

,

13Note that we are not accounting for parents' utilities here. Doing so would basically imply an increase in
the social welfare weights as not only the children but also the altruistic parents are bene�ting from the grants.
The change in parental transfers would have no impact on parent's utility due to the envelope theorem.
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where ∆T C(X, I) = NT GNPV (X, I) − NT DNPV (X, I). Finally, note that formula (3) is inde-

pendent of the adjustment in labor supply during college as a response to the grant increase.

This is an implication of the envelope theorem.

Formula (3) expresses the optimal policy as a function of reduced-form elasticities and

provides intuition for the main trade-o�s underlying the design of �nancial aid.14 It is valid

without taking a stand on the functioning of credit markets for students, the riskiness of

education decisions, or the exact modeling of how parental transfers are in�uenced by parental

income and how they respond to changes in �nancial aid. Those factors, of course, in�uence

the values of the reduced-form elasticities. For example, a tightening of borrowing constraints

should increase the sensitivity of enrollment especially for low-income students.

However, note that all terms in the optimal �nancial aid formula are endogenous with

respect to policies. Even if we know the empirical values for current policies, this is not

enough to calculate optimal policies. For this purpose, a fully speci�ed model is necessary.

In the next Section 3, we consider a simpli�ed model, for which we can derive closed-form

solutions.15

3 Is Optimal Financial Aid Progressive? A Simple Model

Simpli�ed Environment. We assume that preferences are linear in consumption and that

labor incomes are taxed linearly at rate τ , which is larger than 0 and smaller than one.

We consider a static problem. If individuals do not go to college, they earn income yH . If

they go to college, they pay tuition F and earn yH(1 + θ). Individuals are heterogeneous in

ability/returns to college, θ, and each θ > 0. There is no uncertainty. Further, individuals

are heterogeneous in parental income I. If individuals go to college, they receive a parental

transfer tr(I) with tr′(I) > 0 and �nancial aid G(I).

Individual Problem. If an individual decides against college, utility is given by UH =

(1− τ)yH . If an individual goes to college, utility is given by UC(θ, I) = (1− τ) yH (1 + θ)−
(F − G(I)− tr(I)). For each income level I, we can de�ne the ability of the marginal college

graduate θ̃(I), implicitly given by UH = UC(θ̃(I), I). All types (θ, I) with θ ≥ (<)θ̃(I) (do

not) attend college. Note that higher parental income here simply has the role of lowering the

costs of college. This implies that high-parental-income children are more likely to select into

college. This channel is reinforced if there is a positive association between I and θ.

Government Problem and Optimal Financial Aid for a Given I. The government

uses non-negative Pareto weights over the types as in the general model from the last section.

14Sometimes such formulas are labeled as su�cient statistics formulas. See Kleven (2018) for a discussion
on the terminology in the literature.

15We are very grateful to one of our referees for many detailed suggestions how to clarify the intuition
behind the results in Section 3.
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Consistent with the notation from last section, F (I) is the parental income distribution and

H(θ|I) the conditional distribution of ability. Appendix A.3 shows that the following version

of equation (3) holds:

h(θ̃(I)|I)

yH(1− τ)︸ ︷︷ ︸
∂E(I)
∂G(I)

×
(
τyhθ̃(I)− G(I)

)
︸ ︷︷ ︸

∆T E(I)

−
(

1−H(θ̃(I)|I)
)

︸ ︷︷ ︸
Ẽ(I)

(1−WE(I)) = 0.

First note that there is no completion e�ect since we abstract from dropout. Second, the

�scal externality takes a simple form. Third the ratio of marginal over inframarginal students

is determined by the hazard rate of the conditional skill distribution. Rewriting leads to a

rather tractable expression for optimal �nancial aid G(I).

Proposition 1. The optimal �nancial aid schedule in the simpli�ed enviornment is given by

G(I) = τ (F − tr(I))− yH(1− τ)2

(
1−H(θ̃(I)|I)

)
h(θ̃(I)|I)

× (1−WE(I)), (5)

where θ̃(I) = F−tr(I)−G(I)
(1−τ)yH

. and τ (F − tr(I)) = τyH θ̃(I).

Proof. See Appendix A.3.

The �rst term in (5), τ (F − tr(I)), can be interpreted as a Pigouvian correction. Without

any distortions, i.e. G(I) = τ = 0, the marginal college enrollee would be characterized by

θ∗(I)yH = F − tr(I). (6)

Here the private returns and costs are equalized to the social ones. Such a condition is typically

called ��rst best�. When τ or G(I) 6= 0, the marginal enrollee still equates private returns to

private costs, but there is a wedge between the social returns and costs now. Equating private

returns and costs yields:

θ̃(I)(1− τ)yH = F − tr(I)− G(I). (7)

Comparing (7) with (6) shows that the �scal externality ∆T E(I) = τyhθ̃(I)−G(I) can be seen

as a wedge. This is the classical �siamese twins� result of Bovenberg and Jacobs (2005): the

sole presence of taxes gives a rationale for subsidizing education and the size of the subsidy

is increasing in the size of the tax. Setting G(I) = τ (F − tr(I)) = τyHθ
∗(I) would imply

θ̃(I) = θ∗(I) and hence yield the �rst-best education level. When choosing the optimal

education subsidy G(I), the social planner, however, cannot target the marginal students but

has to account for the fact that an increase in G(I) also has to be paid to those students

that are inframarginal in their decision.16 This is accounted for in the second part of (5).

16If the planner can choose G(I, θ) in this simple model, she e�ectively has lump-sum taxes/transfers
available (for all college students). She only needs to correct the �scal externality in this case (the other
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Since the decision of inframarginal students is not altered, this is a pure transfer which is

valued by WE(I)− 1 multiplied with the share of inframarginal students. This implies that if

WE(I) > (<)1, the planner would subsidize students of parental income up to a point where

education is above (below) the �rst best level as de�ned above.17 Further, this second term

inversely proportional to share of marginal students. Intuitively, the more marginal students

can be incentivized, the higher is the relative weight on the �rst term.

In the following we want to explore whether �nancial aid optimally decreases with parental

income. For this purpose, we shut down any redistributive case for �nancial aid and assume

that ∂WE(I)
∂I

= 0. Two useful benchmark cases generate this: (i) a government that solely wants

to maximize tax revenue (implying WE(I) = 0 for all I) and (ii) unweighted Utilitarinism

(implying WE(I) = constant < 1 for all I as we elaborate in Appendix A.3). If redistribution

within college students is desired, i.e. with declining weightsWE ′(I) < 0, this would strengthen

the case for progressivity and need-based �nancial aid.

Is Optimal Financial Aid Decreasing in Parental Income? We proceed in two steps

and �rst state a result on the progressivity if parental income and child's ability are indepen-

dently distributed.

Corollary 1. Assume that ability θ and parental income I are independent, that is, H(θ|I) =

H(θ) ∀ θ, I. Further assume ∂WE(I)
∂I

= 0, i.e. there is no desire to redistribute from high to

low parental income students. Then the optimal �nancial aid schedule is progressive (i.e.,

G ′(I) < 0 ∀ I) if the distribution H(θ) is log concave.

Proof. See Appendix A.4.

The �rst term in (5) is decreasing in I. The higher parental income, the lower are the costs

of college F − tr(I) and hence, for a given rate of subsidization τ , the lower is the overall level

of the subsidy. Since θ̃′(I) < 0,18 the second term is decreasing in I if the inverse of the hazard

rate of H(θ) is decreasing. As Bagnoli and Bergstrom (2005) point out, log-concavity of a

density function is su�cient for an increasing hazard rate.19 Hence, in the illustrative case in

which parental income and child's ability are independent, we have an important benchmark,

where the selection mechanism through parental income in itself calls for progressive �nancial

considerations like the ratio of marginal to inframarginals and redistribution within students can be perfectly
dealt with by choosing G(I, θ) for each type. This is not the case in the more general model presented in
Section 2. We analyze the case of jointly optimizing merit-based and need-based �nancial aid quantitatively
in C.10.

17This resembles the results of the optimal income tax literature with extensive margin labor supply re-
sponses that negative participation taxes are optimal if the social welfare weight of low income workers is
above one, see e.g. Saez (2002).

18Note that for this we need tr′(I) + G′(I) > 0, i.e. that �nancial aid is not too progressive. As our proof
in Appendix A.4 shows, this is the case.

19Log-concavity of a probability distribution is a frequent condition used in many mechanism design or
contract theory applications, as this is "just enough special structure to yield a workable theory" (Bagnoli and
Bergstrom, 2005).
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aid. Next we turn to the empirically more appealing case in which parental income and ability

are positively associated.20

Corollary 2. Assume that ability θ and parental income I are positively associated in the

sense that for I ′ > I, the distribution H(θ|I ′) dominates H(θ|I) in the hazard rate order, that

is,

∀θ, I, I ′ with I ′ > I :
h(θ|I)

1−H(θ|I)
≥ h(θ|I ′)

1−H(θ|I ′)
. (8)

Further assume ∂WE(I)
∂I

= 0, i.e. there is no desire to redistribute from high to low parental

income students. Then the optimal �nancial aid schedule is progressive (i.e. G ′(I) < 0 ∀ I) if
the conditional skill distributions H(θ|I) are log concave.

Proof. See Appendix A.5.

This condition (8) is stronger than �rst-order stochastic dominance (FOSD) but does imply

that the skill distribution of higher parental income levels �rst-order stochastically dominates

the skill distribution of lower parental income levels. FOSD of the skill distribution, however,

does not automatically imply (8).21 For the empirically plausible Pareto distribution, FOSD

does imply dominance in the hazard rate order. Consider, for example, the speci�cation

h(θ|I) = α(I) θα(I)

θα(I)+1 , where α(I) is the thickness parameter. Here we have 1−H(θ|I)
h(θ|I) = θ

α(I)
and

hence if α′(I) < 0, then the tail of the skill distribution of high-parental-income children is

thicker and the FOSD property is ful�lled. Therefore, (8) is ful�lled.

The goal of this section was to show that under some rather weak assumptions, optimal

�nancial aid is indeed decreasing in income. Whereas the simple model provides an interesting

and intuitive benchmark, a richer empirical model is needed to give more concrete policy

implications. In the next section we set up such a model and quantify it for the United States.

4 Quantitative Model and Estimation

We now present the fully speci�ed model version, which is a speci�c case of the model presented

in Section 2.

20As Carneiro and Heckman (2003, p.27) write: "Family income and child ability are positively correlated,
so one would expect higher returns to schooling for children of high income families for this reason alone."
In a famous paper, Altonji and Dunn (1996) �nd higher returns to schooling for children with more-educated
parents than for children with less-educated parents.

21See, e.g., Shaked and Shanthikumar (2007, p.18).
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4.1 Quantitative Model

4.1.1 Basics

We �rst specify the underlying heterogeneity. Besides parental income I, individuals di�er in

X = (θ, s,ParEdu,Region, εE), which captures ability, gender, their parents' education levels,

the region in which they live, and an idiosyncratic taste for college. Workers' �ow utility in

the labor force is parameterized as

UW (ct, `t) =

(
ct − `1+εst

1+εs

)1−γ

1− γ
,

where the labor supply elasticity 1
εs

is allowed to vary by gender. Individuals work until 65

and start at age 18 in case they decide to not enroll in college. Each year, individuals make

a labor-supply decision and a savings decision. Life-cycle wage paths depend on ability θ,

gender s, education e, and on a permanent skill shock that individuals draw upon �nishing

education and entering the labor market. We present the details of the wage parameterization

in Appendix B.3.

4.1.2 College Problem

We now consider decisions of individuals that are enrolled in college. We assume that students

can choose to work part-time, full-time, or not at all. Formally, `Et ∈ {0, PT, FT}. For �ow
utility in college we assume the following functional form:

UE
(
ct, `

E
t ;X, ε`

E

t

)
=

c1−γ
t

1− γ
− κX − ζ`

E
t + ε

`Et
t .

The term κX is the deterministic component of the psychic cost of attending college. Workers

of higher ability may �nd college easier and more enjoyable and therefore may have lower

psychic costs of college. Furthermore, children with parents who attended college may �nd

college easier, as they can learn from their parents' experiences. Finally, we allow the psychic

cost of college to vary by an agent's gender, to re�ect di�erences in college-going rates across

genders. We therefore parameterize the psychic cost term as

κX = κ0 + κθ log (θ) + κfemI (s = female) + κParEdParEdu.

The term ζ`
E
t is the cost of working `Et hours in college,22 and ε

`Et
t is a shock associated with

continuing college and working `Et hours. This represents any idiosyncratic factors associated

with staying in college and working that are not captured elsewhere in the model. We assume

that the idiosyncratic preference shocks for students, ε
`Et
t , are distributed with a nested logit

structure, with a separate nest for the three options involving continuing in college and a

22We normalize ζ0 = 0 w.l.o.g.
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separate nest for dropping out of college. We denote the nesting parameter by λ and the

scale parameter by σ`
E
. Given these assumptions, one can de�ne the choice-speci�c Bellman

equations of an agent, depending on their labor supply choices V
E,`Et
t

(
X, I, at, ε

`Et
t

)
. For

brevity, we do so in Appendix B.4, since it is just a speci�c case of the problem from Section

2.1. We now turn to the value of staying in college, dropping out of college and enrolling in

college initially. Note that these are all just special cases of the value functions presented in

Section 2.1. The value of staying enrolled is the maximum of the three labor supply options:

V ND
t (X, I, at, εt) = max

{
V E,0
t

(
X, I, at, ε

0
t

)
, V E,PT

t

(
X, I, at, ε

PT
t

)
, V E,FT

t

(
X, I, at, ε

FT
t

)}
where εt is the vector of choice-speci�c preference shocks. At the beginning of each pe-

riod, the agent must either choose to drop out of college or continue in college. We pa-

rameterize the psychic cost of dropping out as d (εt) = δ − εDt , where δ is the determin-

istic part of the dropout cost and εDt is the idiosyncratic part. Therefore, we can write

V D
t

(
X, I, at, ε

D
t

)
= E

[
V W
t (X, I, e = D, at, wt)

]
− δ + εDt . As in Section 2.1, an agent's prob-

lem at the beginning of the period is to choose whether or not to drop out: V E
t (X, I, at, εt) =

max
{
V D
t

(
X, I, at, ε

D
t

)
, V ND

t (X, I, at, εt)
}
.

At the beginning of the model, children must decide whether to enter college or to enter

the labor market directly. Let υ(X) = εE represent idiosyncratic taste for college that is

unre�ected elsewhere in the model and is observed by the agent before their enrollment choice.

We consider εE to be a random, idiosyncratic component of the nonpecuniary bene�ts of

college enrollment, in addition to the deterministic psychic cost κX . We assume that εE is

distributed as type I extreme value with scale parameter σE. Given this, the value of enrolling

in college is

V E(X, I) = E
[
V E

1 (X, I, a1 = 0, ε1)
]

+ εE

As before, an agent enrolls if V E (X, I) > V H (X, I). For the remainder of the paper, it will

be useful to separate the elements of the vector X that are observable to the econometrican

from the idiosyncratic enrollment draw εE. We therefore let X̃ = (θ, s,ParEdu,Region).

4.1.3 Parent's Problem

In Section 2 we modeled parental transfers in a general reduced form fashion. Now we provide

an explicit microfoundation where we model the parental life-cycle decision problem. Each

year the parent makes a consumption/saving decision. The parent also chooses how much to

transfer to the child dependent on the child's education choice.23 Therefore, the parent has to

trade o� the utility of helping their child through parental transfers with their own consump-

tion. Parents make transfers to their child in the year in which a child graduates from high

23Note that this also implies that high school transfers may also be endogenous with respect to �nancial
aid. We account for this in the calculation of optimal policy but �nd it to be economically unimportant
quantitatively.
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school. We assume that parents commit to a transfer schedule before the child's idiosyncratic

enrollment bene�t, εE, is realized. This simpli�es the model solution considerably.24 For all

years when the transfer is not given the parent simply chooses how much to consume and

save.25 The parent's Bellman equation and details on the calibration of life-cycle parental

earnings are given in Appendix B.5.26 In the main body, we only elaborate on the portion of

the utility function that arises due to transfers.

In the year of the transfer, the parent receives utility from transfers. Let F
(
trH , trE, X̃, I

)
represent the expected utility the parent receives from the transfer schedule trH , trE, condi-

tional on a child with observable characteristics and parental income (X̃, I).

F
(
trH , trE, X̃, I

)
= ωE

[
V
(
X, I, trH , trE

)]
︸ ︷︷ ︸

Altruism

+E

(ξ0 + ξParEdu)1E︸ ︷︷ ︸
Paternalism

+φ
(cb + tre)1−γ

1− γ︸ ︷︷ ︸
Warm Glow


where 1E is a dummy indicating that the child enrolls in college. There are three components,

which help to match key features of the relationship between parental transfers, parental

income, and the child's problem. First, parents are altruistic, which allows for the possibility

that changes in the �nancial aid schedule crowd out parental transfers. With some abuse of

notation, let a child's expected lifetime utility as a function of parental transfers be written

as

E
[
V
(
X, I, trH , trE

)]
= E

[
max

{
V H

(
X, I|trH

)
, V E

(
X, I|trE

)}]
,

where the expectation is taken over the child's idiosyncratic enrollment bene�t, εE. The term ω

measures the weight the parent places on the child's lifetime expected utility. Second, parents

are paternalistic; they receive prestige utility if the child attends college. Allowing for such

paternalism allows us to match the level of college transfers relative to transfers for children

who forgo college and adds an additional crowding-out element. The parameter ξParEdu allows

prestige utility to vary by the parent's education level. Speci�cally, ξ0 is the prestige utility all

parents receive and ξParEdu is the additional prestige utility parents receive if at least one of

the parents has a college education. Third, parents receive warm-glow utility from transfers

that is independent of how the transfer a�ects the child's utility or choices. Allowing for utility

from warm-glow helps us to match the gradient between parental income and transfers. Here

we adopt the the functional form commonly used in the literature (De Nardi, 2004). The

parameter φ measures the strength of the warm-glow incentive, and cb measures the extent to

which parental transfers are a luxury good.

24If not, the child will have to take into account how parental transfers will respond to their preferences
and ability shocks which they partially reveal through their college choice.

25The fact that parents provide all transfers based on the initial enrollment decision can give the incentive
to strategically enroll for one year and then drop out directly only to obtain the larger parental transfer. This
is one reason for why we incorporated the dropout costs δ, which makes such strategic behavior less attractive.
As we show in Section 4.3, our model performs well regarding the dynamics of dropout and graduation.

26We assume that parents exogenously provide transfers to the agent's siblings as well.
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4.1.4 The Optimality Condition in the Structural Model

Before turning to the estimation, it is worthwhile to get back to (3), the optimality condition

for �nancial aid, and highlight which structural parameters are key for the relationship between

optimal �nancial aid and parental income in our quantitative model. For brevity and clarity,

we focus on the share of marginal and inframarginal enrollees because our numerical analysis

below shows that these are the most important forces for our progressivity result.

Inframarginal Enrollees: For brevity we focus on the share of inframarginal enrollees

E (I) instead of Ẽ(I).27 It is given by:

E (I) =

∫
X̃

exp
(
Ṽ E(X̃, I)/σE

)
exp

(
Ṽ (X̃, I)/σE

)
+ exp

(
V H(X̃, I)/σE

)dH∗(X̃|I).

where H∗(X̃|I) is the CDF for X̃ conditional on I and where Ṽ E
(
X̃, I

)
= V E (X, I)− εE is

the value of enrolling in college minus the idiosyncratic taste for college εE28. This expression

immediately follows from the fact that the idiosyncratic enrollment bene�t εE is distributed

according to a type I extreme value distribution with scale parameter σE. The number of

enrollees conditional on
(
X̃, I

)
increases in the di�erence in the value functions of attending

college or not. How E (I) varies with parental income is largely determined by the relation of

parental income with (i) psychic costs κ, (ii) parental transfers, (iii) ability. In Section 6.1 we

provide a model-based decomposition which addresses the importance of the di�erent elements

(i)-(iii).

Marginal Enrollees: For a given (X̃, I), the share of marginal enrollees is given by

∂E(X̃, I)

∂G(I)
=
E(X̃, I)

(
1− E(X̃, I)

)
σE

∂V E(X̃, I)

∂G(I)
,

where E(X̃, I) is the enrollment share of individuals with observable characteristics X̃ and

income I,
E(X̃,I)(1−E(X̃,I))

σE
is the density of the enrollment bene�t parameter εE at the value

where an (X̃, I) individual is indi�erent between enrolling in college or not. Formally, this

threshold is given by ε̃E(X̃, I) = Ṽ E(X̃, I)−V H(X̃, I). Intuitively, the higher this density, the

more individuals are marginal in their decision and the stronger is the increase in enrollment

due to higher �nancial aid. A property of the extreme value distribution is that the density is

maximized if enrollment is at 50%, as is the case also for a normal distribution. Further, the

lower the scale parameter σE, the higher the share of marginal students ceteris paribus.

27The insights would be identical if we were looking at Ẽ(I) here but notation would be unnecessarily
cumbersome.

28Note that V H(X̃, I) = V H(X, I), with some abuse of notation, because the idiosyncratic preference term
εE does not a�ect V H(X, I)

18



The share of marginal enrollees also depends on how much this threshold ε̃E(X̃, I) changes

due to an increase in �nancial aid, which is captured by:

∂V E(X̃, I)

∂G(I)
= E

tmaxg∑
t=1

βt−1ct(·)−γ
(

1 +
∂trEt (X̃, I,G(I))

∂G(I)

)
t∏

s=1

(1V NDs ≥V Ds )
t−1∏
s=1

(
1− PrGrads (X)

) .
Intuitively, agents with low marginal utility ct(·)−γ during college react more strongly �nancial
aid changes. According to this logic, children with low parental income should be more

responsive to increases in �nancial aid. How much this e�ect varies with parental income

is governed by γ, which we estimate with maximum likelihood. In addition, the stronger

the crowding out of the parental transfer (−∂trEt (X̃,I,G(I))

∂G(I)
), the less responsive are individuals

ceteris paribus since less of the �nancial aid increase reaches them.

All the key parameters are estimated with maximum likelihood and as we document in

Section 4.3 the model performs very well not only in terms of enrollment patterns (targeted

moments) but also in terms of replicating quasi-experimental evidence about the impact of

grant increases on enrollment which was not targeted. In Section 6.1 we provide a model-

based decomposition for how the share of marginal students varies with parental income and

show that the correlation between parental income and parental transfers is a key driver in

our model for why the share of marginal enrollees is decreasing along the parental income

distribution.

4.2 Estimation and Data

To bring our model to the data, we make use of the National Longitudinal Survey of Youth

97 (henceforth NLSY97). A big advantage of this data set is that it contains information

on parental income and the Armed Forces Quali�cation Test score (AFQT-score) for most

individuals. The latter is a cognitive ability score for high school students that is conducted

by the US army. The test score is a good signal of ability. Cunha et al. (2011), for example,

show that it is the most precise signal of innate ability among comparable scores in other

data sets. We use the NLSY97 for data on college-going, working in college, dropout, parental

transfers, and grant receipts.29 Since individuals in the NLSY97 are born between 1980 and

1984, not enough information about their later-life earnings is available. We therefore also use

the NLSY79 to better understand how earnings evolve throughout an agent's life. Combining

both data sets has proven to be a fruitful way in the literature to overcome the limitations

of each individual data set; see Johnson (2013) and Abbott et al. (2018). The underlying

assumption is that the relation between the AFQT score and wages has not changed over

29We calculate parental transfers using the same method as Johnson (2013) which involves summing the
amount of money parents give to the child, the amount of money received from family for college related
expenditures and the monetary value of living at home if the individual lives with his parents. If a child is
living at home in the data, we assume the child additional receives a transfer equal to the monetary value of
living at home. We use estimates of the monetary value of living at home directly from Johnson (2013).
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that time period. We use the method of Altonji et al. (2012) to make the AFQT scores

comparable between the two samples and di�erent age groups. We de�ne an individual as a

college graduate if she has completed at least a bachelor's degree. An individual is considered

enrolled in college in a given year if they report being enrolled in college for at least six months

in a given academic year. Individuals who report enrolling for at least one year in a four-year

college but do not report a bachelor's degree are considered dropouts. Agents who never enroll

in college are considered as high school graduates. Since individuals in the NLSY97 turn 18

years old between 1998 and 2002, we express all US dollar amounts in year 2000 dollars. We

drop individuals with missing values for key variables. We also drop individuals who take o�

one year or more of college before re-enrolling. These agents constitute 11% of the sample.

We allow college tuition to vary by the agent's region. For the variable Region, we consider

the four regions for which we have information in the NLSY: Northeast, North Central, South,

and West. An overview of our calibration and estimation procedure is given in Table 1. First

of all, to quantify the joint distribution of parental income and ability, we take the cross-

sectional joint distribution in the NLSY97. We then proceed in four steps. First, we calibrate

and preset a few parameters in Section 4.2.1. Second, we calibrate current US tax and college

policies, which we document in Appendices B.1 and B.2, respectively. Third, we estimate the

parameters of the wage function, which we document in Appendix B.3. Fourth, we estimate

the parameters of the child's and parent's utility via maximum likelihood in Section 4.2.2.

4.2.1 Calibrated Parameters

We set the risk-free interest rate to 3% (i.e., r = 0.03) and assume that individuals' discount

factor is β = 1
1+r

. For the labor supply elasticity, we choose ε = 5 for men and ε = 1.66

for women, which imply compensated labor supply elasticities of 0.2 and 0.6, respectively.30

We make the assumption that students can only borrow through the public loan system. In

the year 2000, dependent undergraduates could borrow $2,625 during the �rst year of college,

$3,500 during the second, and $5,500 during following years up to a maximum of $23,000. We

set these as the loan yearly borrowing limits in our model. Students are eligible for either

subsidized Sta�ord loans, under which the student does not pay interest on the loan while

he/she is enrolled in college, or unsubsidized Sta�ord loans, where the student pays interest

on the loan. Students are eligible for subsidized loans if their cost of college exceeds their

expected family contribution, which is calculated as a function of parental assets and income,

number of siblings, and student assets and income. For simplicity, we follow Johnson (2013),

and assume that students with parental income below the sample median are eligible for

subsidized loans and therefore do not pay interest on their loans while in college and that

30See Blau and Kahn (2007) for a discussion of labor supply di�erences across gender. Our results are
robust to assuming smaller gender di�erences in labor supply behavior and also larger di�erences. The labor
supply elasticity is in general not a crucial parameter for optimal �nancial aid.

20



Table 1: Parameters and Targets

Object Description Procedure/Target

F (I) Marginal distribution of parental income Directly taken from NSLY97
(θ, I) Joint and conditional distribution of innate abilities Directly taken from NSLY97
r = 0.03 Interest Rate
εMen = 5 Inverse Labor Supply Elasticity for Men
εWomen = 1.66 Inverse Labor Supply Elasticity for Women
PrGradt (θ) Graduation Probabilities Directly taken from NSLY97

Wage Parameters Estimated from regressions
Parameters of Child and Parental Utility Maximum Likelihood (Table 5)

Current Policies

L̄t Yearly Sta�ord Loan Maximum Values Value in year 2000
T (y) Current Tax Function Heathcote et al. (2017)
G(θ, I) Need- and Merit-Based Grants Estimated from regressions

students with parental income above the median receive unsubsidized loans and therefore pay

interest on loans while in college. Finally, we allow graduation probabilities to depend on

an agent's ability and chose PrGradt (θ) as the fraction of continuing students with ability θ

who graduate each year. In practice, we estimate separate yearly graduation probabilities for

students with above median ability and below median ability. We assume that all agents in

the model have to graduate after six years by setting PrGrad6 (θ) = 1 for all ability levels.

4.2.2 Estimation

We estimate the remaining parameters with maximum likelihood. An agent's likelihood con-

tribution consists of 1) the contribution of their initial college choice, 2) the contribution of

their labor supply and continuation decision each year in college, and 3) the contribution

of their realized parental transfers. We assume that parental transfers are measured with

normally distributed measurement error. The set of parameters estimated via maximum like-

lihood consists of the CRRA parameter, γ, the set of parameters governing the amenity value

of college and working in college, κX and ζ, the dropout cost, δ, the parameters governing

the parent's altruism, paternalism, and warm glow, ω, ξ0, ξParEd, φ and cb, the parameters

governing the distribution of the college enrollment and working in college preference shocks:

σE, σ`
E
and λ, and the standard deviation of the measurement error of parental transfers,

σe
tr
. The likelihood contribution of college enrollment and labor supply in college are given

by the logit choice probabilities and the likelihood contribution of parental transfers by the

PDF of the normal distribution. As these formulas are relatively standard, we present the full

likelihood function in Appendix B.6.

Appendix B.7 provides a discussion of the identi�cation. The maximum likelihood estimates

are shown in Table 5 in Appendix B.8. We now discuss the estimates of several of the key

parameters. This is kept brief, as the magnitude of the parameters is di�cult to interpret
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in a vacuum. The parameter γ governs the curvature of the utility function with respect

to consumption and plays a key role in determining an agent's risk aversion. We estimate

γ = 1.89, which is in the middle of the range of estimates from the literature. As we have

seen in Section 4.1.4, this parameter, along with the variance of the college-going shock, plays

an important role in dictating the elasticity of college enrollment with respect to �nancial

aid. The parameters governing the psychic cost of college are κ0, κθ, κfem, and κParEd. Our

estimates of these parameters imply that the psychic cost of college is decreasing in an agent's

ability and parental education. Furthermore, females have a lower psychic cost of college

relative to men, re�ecting the fact that women attend college in high numbers despite lower

monetary returns than men.

4.3 Model Performance and Relation to Empirical Evidence

4.3.1 Model Fit

Enrollment, Graduation and Dropout. Figure 2 illustrates enrollment as a function

of parental income and AFQT scores in percentiles. The solid lines indicate results from

the model, and the dashed lines are from the data. The relationships in general are well

�tted, though we slightly underestimate both gradients. The overall number of individuals

who enroll in college is 38.4% in our sample and 39.4% in our model. In our model, 30.0%

of agents graduate from college compared to 27.7% in the data. Data from the US Census

Bureau are very similar: in 2009 the share of individuals aged 25-29 holding a bachelor's

degree is 30.6% � a number that comes very close to our data, where we look at cohorts

born between 1980 and 1984. In Appendix B.9 we also show that the �t is equally good for

graduation rates and when we examine enrollment rates separately by gender. Figure 2(a)

(a) Enrollment Rates and Parental Income (b) Enrollment Rates and AFQT

Figure 1: Enrollment Rates
Notes: The solid (red) line shows simulated enrollment shares by parental income and AFQT

percentile. This is compared to the dashed (black) line which shows the shares in the data.
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shows graduation and dropout fractions over time in the model and the data. The solid red

line and the dashed black line show the fraction of the total population that have graduated as

a function of number of years of college completed in the model and the data, respectively. In

both the model and the data, graduation rates are very low for students with less than three

years of college. Graduation shares peak at four years before decreasing. The dashed-dotted

blue line and the dotted green line show the fraction of students that drop out in each year in

the model and data, respectively. Dropout shares are slightly downward sloping as a function

of years in college in both the model and the data. This slope is slightly steeper in the model

compared to the data.

(a) Graduation and Dropout Over Time (b) College Transfers and Parental Income

Figure 2: Model Fit: Graduation, Dropout and Parental Transfers

Notes: The panel on the left shows simulated graduation and dropout rates in the model versus the

NLSY97. The panel on the right shows the present value of parental transfers given by parents of

college enrollees and non-enrollees in data (NLSY97) versus model.

Parental Transfers. Di�erences in parental transfers across parental income levels can

play a role in generating di�erential college-going rates across income groups. We analyze the

�t of our model with respect to parental transfers in Figure 2(b). We can see that college

transfers are strongly increasing in parental income in both the model and data, though our

model slightly underestimates the average college transfers in the data. The average college

transfer for enrollees with below-median parental income is $45,000 in the model compared

to $49,000 in the data, while the average college transfer for enrollees with above-median

parental income is $57,000 in the model compared to $60,000 in the data. The model does a

good job of matching the average level of high school transfers. While in our simulations high
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Mean Earnings
College Premia SD(log (y))

Age High-School College

j Model Data Model Data Model Data Model Data

25 22,938 21,348 26,923 25,205 1.17 1.18 0.66 0.59

26 23,747 22,407 29,353 28,300 1.24 1.26 0.67 0.60

27 24,549 23,340 31,829 31,781 1.30 1.36 0.67 0.61

28 25,340 24,022 34,334 33,840 1.35 1.41 0.68 0.62

29 26,117 25,217 36,848 36,254 1.41 1.44 0.69 0.65

30 26,877 25,306 39,354 37,904 1.46 1.50 0.70 0.65

31 27,617 26,449 41,833 40,904 1.51 1.55 0.70 0.66

32 28,334 27,346 44,267 42,954 1.56 1.57 0.71 0.67

33 29,025 28,680 46,639 44,346 1.61 1.55 0.72 0.68

34 29,687 30,494 48,932 46,872 1.65 1.54 0.72 0.67

Notes: Data based on NLSY97 with cohorts born between 1980 and 1984.

Mean earnings expressed in year 2000 dollars. Most recent wave from 2015.

Model based moment results represent results from estimated model. Zero

and small earnings below $300 a month excluded. SD(log y) equal to stan-

dard deviation of log earnings. NLSY97 is top coded at income levels around

$155,000.

Table 2: Earnings Dynamics

school transfers are increasing globally in parental income, parental transfers for high school

graduates in the data are decreasing for the highest-income children.31

Working During College. We match average hours worked quite well. The average college

student in our simulation works 16.21 hours per week compared to 17.39 in the data.32 We

observe a weak negative relationship between parental income and working during college in

the model and the data.

Earnings and College Premia. Table 2 analyzes the performance of the model with

respect to earnings dynamics. We can only compare the model to the NLSY97 data up to

age 34 since cohorts in the NLSY97 are born between 1980 and 1984. The simulated mean

earnings across ages are very close to those in the data. As described in Section 4, we account

for top-coding of earnings data by appending Pareto tails to the observed earnings distribution.

As such, average earnings are slightly larger in model as compared to the data. We match

college earnings premia very closely until around age 32. After that, the model and data

diverge slightly as more and more college students reach top-coded earnings in the NLSY97.

In Figure 13 in Appendix B.10, we plot the implied earnings pro�les in the model over the

31A reasonable suspicion is that this partly re�ects measurement error because the set of high-income
children who never enroll in college is relatively small. Our parameter estimates were robust ignoring this set
of individuals in the estimation.

32Note that average hours of work are calculated using data from the entire year and thus include work
during summer break.
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full range of ages.33 The college-earnings premium averaged across all ages greater than 25 in

our model is 85%, that is, the average income of a college graduate is nearly twice as high as

the average income of a high school graduate. This is well in line with empirical evidence in

Oreopoulos and Petronijevic (2013); see also Lee et al. (2017).

Untargeted Moments. The model successfully replicates quasi-experimental studies. First,

it is consistent with estimated elasticities of college attendance and graduation rates with

respect to �nancial aid expansions (Deming and Dynarski, 2009). Second, it is consistent

with the causal impact of parental income changes on college graduation rates (Hilger, 2016).

Further, our model yields (marginal) returns to college that are in line with the empirical

literature (Card, 1999; Oreopoulos and Petronijevic, 2013; Zimmerman, 2014). More details

are contained in Appendix B.11.

5 Results: Optimal Financial Aid

5.1 Optimal (Need-Based) Financial Aid

For our �rst policy experiment, we ask which levels of �nancial aid for di�erent parental

income levels maximize Utilitarian welfare. For this experiment, we consider optimal budget

neutral reforms where we do not change taxes or any other policy instrument but instead only

vary the targeting of �nancial aid.34 Additionally, we work under the constraint that �nancial

aid is nonnegative everywhere.35 Figure 3(a) illustrates our main result for the benchmark

case. Optimal �nancial aid is strongly decreasing in parental income. Compared to current

policies, �nancial aid is higher for students with parental income below $78,000. This change

in �nancial aid policies is mirrored in the change in college graduation, as shown in Figure 3(b).

The total graduation rate increases by 2.8 percentage points to 32.8%. This number highlights

the e�cient character of this reform.

33The e�ect of the fatter right tails we include in the model can also be seen in the �t of standard deviation
of log earnings. The simulated standard deviation of log earnings is 4-7 log points higher than that in the data
from age 25 to age 34.

34At this stage, we leave the merit-based element of current �nancial aid policies unchanged, that is, we do
not change the gradient of �nancial aid in merit and show the �nancial aid level for the median ability level.
In Appendix C.10, we show that our main result also extends to the case in which the merit-based elements
are chosen optimally.

35Relaxing this, one would get a negative subsidy at high parental income levels but nothing substantial
changes in terms of results.
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(a) Financial Aid (b) Graduation Rates

Figure 3: Optimal versus Current Financial Aid

Notes: Optimal �nancial aid with a Utilitarian welfare function and current �nancial aid in Panel

(a). In Panel (b) we display the college graduation share by parental income group.

5.2 No Desire for Redistribution

One might be suspicious of whether the progressivity is driven by a desire for redistribution

from rich to poor students that results in declining welfare weights.36 If this were the case, the

question would naturally arise whether the �nancial aid system is the best means of doing so.

However, we now show that the result holds even in the absence of redistributive purposes. We

modify the social planner's problem such that the marginal social welfare weights are constant

across parental income levels, i.e. ∂WE(I)
∂I

= 0. In this case, the social planner values a dollar

transferred to any inframarginal student equally, independent of the student's marginal utility

of consumption or level of parental crowdout. The results are in Figure 4(a). The optimal

�nancial aid schedule is slightly less progressive than the optimal �nancial with a Utilitarian

welfare function. The implied graduation patterns are illustrated in Figure 4(b). The results

show that the social planner's redistribution motive only plays a minor role in generating

progressive optimal �nancial aid.

5.3 Tax-Revenue-Maximizing Financial Aid

In this section we ask the following question: how should a government that is only interested

in maximizing tax revenue (net of expenditures for �nancial aid) set �nancial aid policies? Fig-

36In fact, 1 − WC(I), which is the relevant term for the formula, increases from around by a factor of
around 2.3 between the 75th and 25th percentile of parental income. Note that this welfare weight is de�ned
such that it accounts for crowding out of parental transfers. In fact, we �nd that crowding out is stronger for
high parental income students. Going from the lowest to the highest parental income, the crowding out rate
is monotonically increasing, from 9% at the 25th percentile to 25% at the 75th percentile of parental income.
The fact that 1−WC(I) increases by a factor of 2.3 is hence not only due to the Utilitarian welfare function
but also due to the fact that an increase in �nancial aid for the poorest students will be crowded out much
less than �nancial aid for the richest students.

26



(a) Financial Aid (b) Graduation Rates

Figure 4: Financial Aid Policies with no Redistribution Motive

Notes: The dashed-dotted (blue) line shows the optimal schedule for a social planner with no

redistribution motive. Optimal �nancial aid with a Utilitarian welfare function and current �nancial

aid are also shown for comparison in Panel (a). In Panel (b) we display the college graduation share

by parental income group for each of the three scenarios.

ure 5(a) provides the answer: revenue-maximizing �nancial aid in this case is very progressive

as well. Whereas the overall level of �nancial aid is naturally lower if the consumption utility of

students is not valued, the declining pattern is basically una�ected. For lower parental income

levels, revenue-maximizing aid is more generous than the current schedule, which implies that

an increase must be more than self-�nancing. We study this in more detail in Section 5.4.

The implied graduation patterns are illustrated in Figure 5(b).

5.4 Self-Financing Reforms

An increase in �nancial aid can be self-�nancing if properly targeted. The solid red line in

Figure 6 illustrates the �scal return, that is, the net e�ect on government revenue were �nancial

aid for a particular income level to be increased by $1. For example, a 40% return implies that

the net present value increase in tax revenue is 40% larger than the cost of increasing �nancial

aid. Returns are positive for parental income between $0 and $33,000; the latter number

corresponds to the 32nd percentile of the parental income distribution. This result is striking:

increasing subsidies for this group is a free lunch. An alternative would be to consider reforms

where �nancial aid is increased for students below a certain parental income level. This case

is illustrated by the dashed-dotted blue line in Figure 6. An increase in �nancial aid targeted

to children with parental income below $54,000 � corresponding to the 59th percentile � is

slightly above the margin of being self-�nancing.
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(a) Financial Aid (b) Graduation Rates

Figure 5: Tax-Revenue-Maximizing Financial Aid Policies

Notes: The dashed-dotted (blue) line shows the optimal schedule under the objective of maximizing

net-tax revenue (net of expenditures for �nancial aid). Optimal �nancial aid with a Utilitarian

welfare function and current �nancial aid are also shown for comparison in Panel (a). In Panel (b)

we display the college graduation share by parental income group for each of the three scenarios.

6 Why Are Optimal Policies Progressive?

We have just shown in Section 5 that optimal �nancial aid is progressive and more so than

the current US policies. In Sections 5.2 and 5.3, we have also shown that the results are not

driven by the desire to redistribute from richer to poorer students. We now explore the key

forces determining this progressivity result. Recall that the change in welfare due to a small

increase of G(I) is given by (3)

∂E(I)

∂G(I)
×∆T E(I)︸ ︷︷ ︸

Enrollment E�ect

+
∂C(I)

∂G(I)

∣∣∣∣∣
E(I)

E(I)×∆T C(I)︸ ︷︷ ︸
Completion E�ect

− Ẽ(I)
(
1−WE(I)

)︸ ︷︷ ︸
Mechanical E�ect

.

To explain why the optimal �nancial aid schedule is more progressive than the current US

�nancial aid, we illustrate the two most important determinants of this welfare e�ect: the

enrollment e�ect and the mechanical e�ect evaluated at the current US system �nancial aid.

We only found a quantitatively very small contribution of the completion e�ect and therefore

focus on the other two e�ects. Figure 7(a) plots the increase in enrollment for a $1,000 increase

starting from the current �nancial aid system against parental income. The curve is decreasing

in income � children with low parental income react more strongly. This contributes to the

result that optimal �nancial aid is more progressive than the current US benchmark. By

contrast, the �scal externality ∆T E(I) is increasing in parental income because (i) marginal
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Figure 6: Fiscal Returns on Increase in Financial Aid

Notes: The dashed-dotted (blue) line shows the net �scal return for a $1 increase in �nancial aid

targeted to all students with a parental income level lower than X. It crosses the pro�tability line

at $54,000 � corresponding to the 59th percentile. The solid (red) line shows the net �scal return for

a $1 increase in �nancial aid targeted to all students with a parental income level equal to X. It

crosses the pro�tability line at $33,000 � corresponding to the 32nd percentile.

enrollees from higher income households have higher returns37 and (ii) the �scal externality is

higher for children with high income parents because they receive less �nancial aid. We now

turn to the mechanical e�ect. Since we have already shown in Sections 5.2 and 5.3 that the

redistributive preferences play a minor role, we turn again to the of inframarginal enrollees

as plotted in Figure 1(a). As discussed above, there is a strong parental income gradient, as

the simulated share of enrollees increases from around 21% to around 63%. Note that this

basically implies that the direct marginal �scal costs of a grant increase by a factor of three

with parental income.

Summing up, both the increasing share of inframarginal students and the declining share

of marginal students are important drivers for why optimal �nancial aid is more progressive

than current �nancial aid. An open question is what exactly drives how the share of marginal

and inframarginal students vary with parental income. We now provide a model-based de-

composition to shed light on the key drivers.

6.1 Relationship between Inframarginal Students, Marginal Students,

and Parental Income

We have just seen that the following two features mainly explain why optimal �nancial aid

is more progressive than current �nancial aid. First, students with low parental income are

more likely to be on the margin of enrolling in college, therefore an increase in �nancial aid

37The relationship between parental income and the average ability of marginal students depends on how
strongly college enrollees are selected on ability. Ultimately, we �nd that average ability of marginal enrollees
is increasing in parental income. As the college wage premium is increasing in ability, this implies that increase
of tax payments of marginal enrollees is increasing in parental income.
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(a) Marginal Students (b) Fiscal Externality

Figure 7: Marginal Students and Tax Revenue Changes

Notes: In (a), we plot the change in enrollment rates for a simulated $1,000 change in �nancial aid

for each parental income level. The average (across all individuals in the sample) is 1.69 percentage

points. In (b), we show the implied average �scal externality across all students who are marginal

w.r.t. the �nancial aid increase.

targeted at low income families will induce larger increases in college enrollment. Second, the

positive relation between college enrollment and parental income is strong and therefore the

direct �scal costs of increasing �nancial aid is lower for children with low parental income.

We now perform a model-based decomposition exercise to better understand which factors

drive these two relationships. For this decomposition, all changes to the model speci�cation

are cumulative. That is, each new model speci�cation contains the same model alterations as

the previous speci�cation.38

To isolate the e�ects of model primitives, we perform this decomposition for a hypothetical

�at �nancial aid schedule instead of the current US tax schedule. This allows us to isolate

the in�uence of the model primitives, instead of mixing the e�ects of current policies and

model primitives. Speci�cally, we set the aid for all parental income groups to the mean level

of �nancial aid in the data. Results are similar if the decomposition is performed for the

current �nancial aid system, as we document in Appendix C.1. We start by focusing on the

relationship between parental income and college enrollment in Figure 8(a).39 The solid line

captures the baseline case. College enrollment rates are strongly increasing in parental income:

69% of students at the top of the parental income distribution enroll in college compared to

only 17% at the bottom of the distribution.40 One factor that leads to this positive relationship

is the correlation between parental income and ability. To understand the contribution of this

38In Appendix C.2, we consider an alternative decomposition in which we equalize parental transfers �rst.
In Appendix C.3, we consider a decomposition where we remove the borrowing constraint before we equalize
parental transfers.

39Alternatively, we could have focused on graduation instead of enrollment. The implications are very
similar.

40Note that this relationship is stronger than the one in Figure 1(a) where the current �nancial aid schedule
is used as benchmark.
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correlation toward di�erential college-going rates by parental income, we simulate a version of

the model in which we remove the correlation between parental income and ability by drawing

each agent's ability from the unconditional ability distribution. Recall that ability a�ects

both the returns to college and the psychic costs of attending college. Figure 8(a) shows that

the relation between college enrollment and parental income reduces substantially, with 27%

of children at the bottom of the income distribution enrolling in college compared to 69% of

children from the top of the income distribution.

Additionally, children with higher parental income are more likely to go to college because

parental income is positively correlated with parental education. Since higher parental edu-

cation lowers psychic costs, this implies a negative correlation between parental income and

psychic costs. We remove the relation between parental education and psychic costs in college

by setting κParEd = 0, in addition to removing the correlation between parental income and

ability.41 After removing these di�erences in psychic costs, the relationship between parental

income and college enrollment becomes again �atter with 33% of children from the bottom of

the income distribution and 48% from the top of the income distribution.

In our model, there are further factors that in�uence the parental income gradient in college

education. The individual returns to college are not known at the time of the enrollment

decision. As individuals are risk averse and as parents with higher income levels give higher

transfers for students attending college, this riskiness of college is another mechanism which

can generate a positive relationship between college and parental income. In addition to the

modi�cations above, we remove this risk in the monetary return to college by simulating a

version of the model in which each agent with certainty receives a �xed labor market ability

draw. Removing the riskiness of college leads to a further �attening of the relationship between

parental income and college enrollment. Yet there is still a gradient as enrollment increases

from 35% to 48% due to the fact that high parental income children obtain more transfers from

their parents. We �nally remove this relationship by providing all children the mean parental

transfer levels for enrollees and non-enrollees and assuming that no families are eligible for

subsidized Sta�ord loans. As a consequence, the relationship between parental income and

college enrollment becomes �at.42 We conclude that all components play an important role

for the increasing share of inframarginal students with the exception of the risk channel.

We turn to the determinants of the negative relation between parental income and share of

marginal enrollees (again considering a $1,000 increase in �nancial aid) in Figure 8(b). The

solid line shows the relationship between parental income and the share of marginal students

in the baseline case. The share of marginal students is decreasing in parental income. The

dotted line and the dash-dotted line show the cases in which we remove the correlation between

41Furthermore, we set κ0 so that the average psychic cost of going to college is unchanged.
42The fact that it is not totally �at is due to the fact that individuals still di�er in gender and region and

these variables are not distributed in exactly the same way for each parental income group.
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(a) Inframarginal Graduates (b) Marginal Students

Figure 8: Model-Based Decomposition for Marginal and Inframarginal Students

Notes: We plot the share of college enrollees and marginal college enrollees given a �at �nancial aid

schedule for di�erent model speci�cations. The solid red line represent the baseline model (but also

with the �at �nancial aid schedule). For the dashed black line we simulate a model version for which

we remove the correlation between ability and parental income. For the dashed-dotted blue line we

simulate a model version for which we remove additionally the correlation between the psychic costs

and parental education. For the dotted pink line we simulate a model version for which we

additionally removes labor market riskiness; i.e. education decisions are made with no uncertainty

about future wages. For the turquoise line with crosses we simulate a model version for which we

set parental transfers to the mean parental transfers in the data, conditional on education.

parental income and ability and in which we remove the relation between parental income and

parental education, respectively. In both cases, the share of marginal students among low

income families increases slightly. One reason why this occurs is because the enrollment share

of low income families moves closer to 50%. As we have seen in Section 4.1.4, 50% corresponds

with the mode of the extreme value distribution, which implies a higher marginal share, all

else equal. Removing the riskiness of college returns (the dotted line) reduces the share of

marginal low income students slightly, but the relation between parental income and the share

of marginal students is still strongly decreasing. Finally, we set parental transfers to the mean

levels for enrollees and non-enrollees and assume no families are eligible for subsidized Sta�ord

loans. The relation between parental income and the share of marginal enrollees disappears

completely when there is no relationship between parental income and the child's �nancial

resources. We conclude that the correlation between parental transfers and parental incomes

play the strongest role in di�erences in the share of marginal students across parental income

levels.

6.2 Recalculation of Optimal Policies

This decomposition has illustrated the key factors in the positive relation between parental

income and college education and the negative relation between parental income and the
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Figure 9: Optimal Financial Aid for Di�erent Model Speci�cations

Notes: For each model speci�cation (see Figure 8), we illustrate the respective optimal �nancial aid

schedule.

share of marginal students. Removing the di�erent elements from the model also a�ects the

other forces that determine the optimal �nancial aid schedule. To get the complete picture,

we therefore now simulate the respective optimal �nancial aid schedule for all these model

speci�cations. Figure 9 shows the implied optimal policies for each model speci�cation. First,

the positive relation of parental income with ability and parental education are not the main

drivers of the �nancial aid results. Although graduation rates �atten (see the lines in Figure

8(a)), there are o�setting e�ect as low-income children are now more likely to be marginal

(see the lines in Figure 8(b)). Policies are still relatively progressive in those models.

Removing riskiness in addition has a stronger impact, because there are no o�setting e�ects

in this case. Both the inframarginal and marginal schedule are �atter now. Finally, the

turquoise crossed line shows an almost zero slope, as transfers are equalized and we are in

a world where parental income plays no more role. The e�ects for marginal students and

inframarginal students again work in tandem, pushing towards �at aid.43

From this decomposition, we conclude that the correlations between parental income and

parental transfers, psychic costs, and ability all play important roles in the progressive opti-

mal aid schedule with parental transfers probably playing the biggest role. The correlation of

parental income with parental transfers drives the negative correlation of parental income and

share of marginal students and also plays a role in the positive correlation of parental income

and the share of inframarginal students. The relationships between parental income and ability

and psychic costs play important roles in the correlation between share of inframarginal stu-

dents and parental income, and therefore also play important roles in the progressive optimal

aid schedule.44

43Again, the fact that it �nancial aid not totally �at is due to the fact that individuals still di�er in gender
and region and these variables are not distributed in exactly the same way for each parental income group.

44In Appendix C.2 we consider a decomposition in which we �rst remove the correlation with parental
transfers before removing the correlations with ability and psychic costs. We reach similar conclusions. In
Appendix C.3, we consider a decomposition which is as in the main body but we also remove borrowing
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7 Extensions

We consider �ve important extensions: the role of borrowing constraints, endogenous abilities

of children, general equilibrium e�ects, endogenous optimal taxation, and merit-based aid.

The latter three are found in the appendix, because of space constraints. General equilibrium

e�ects can be found in Appendix C.8, endogenous optimal taxation can be found in Appendix

C.9, and merit-based aid can be found in Appendix C.10.

7.1 The Role of Borrowing Constraints

We have shown that optimal progressivity is not primarily driven by redistributive tastes but

rather by e�ciency considerations in Section 5.3. Given that our analysis assumes that stu-

dents cannot borrow more than the Sta�ord Loan limit, the question arises whether these

e�ciency considerations are driven by borrowing limits that should be particularly binding

for low-parental-income children. To elaborate on this question, we ask how normative pre-

scriptions for �nancial aid policies change if students can suddenly borrow as much as they

want (up to the natural borrowing limit, which is not binding). For this thought experiment,

we �rst remove borrowing constraints and keep the current �nancial aid system. This will

increase college enrollment and imply a windfall �scal gain for the government. In a second

step, we choose optimal �nancial aid but restrict the government to not use this windfall gain.

As we show in Section C.4, optimal �nancial aid policies become less progressive in this case.

This is expected. More low-income children are close to the borrowing constraint in the base-

line speci�cation. When we remove borrowing constraints, redistributing funds towards these

students becomes less attractive for the utilitarian social planner. Quantitatively, however,

optimal policies are still very progressive even when borrowing constraints are removed. We

also re-estimated a version of the model in which borrowing constraints varied by parental

resources. We found that the optimal �nancial aid schedule was very similar to the baseline

schedule. Details can be found in Appendix C.5. We also considered alternative unreported

versions, where exogenous borrowing constraints depend di�erently on characteristics of the

child and the parent. The policy implications were not a�ected much.

7.2 Endogenous Ability

Up to this point, we have assumed that a child's ability at the beginning of the model, θ,

is exogenous. One might be concerned that parents may respond to changes in the �nancial

aid schedule by adjusting their investment in their child's development, therefore changing

their child's ability at the time of the college entrance decision. To better understand how the

optimal �nancial aid schedule would di�er if ability were endogenous with respect to �nancial

constraints as an intermediate case before removing parental transfers. In this case the role of parental
transfers is much more limited.
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aid, we posit a model extension in which a child's ability is determined endogenously as a

function of parental investment.

Children are endowed with an initial ability at birth θ0, where θ0 is a random variable with

CDF θ0 ∼ Fθ0(·|I). A child's ability at the time of college, θ, is produced as a function of the

child's initial ability and parental monetary investment, Invest. The parent observes θ0 at

the beginning of the child's life and then chooses investment in the child. Additionally, the

parent chooses parental transfers when the child attends college, as in the baseline model. For

simplicity, we assume that grants are only a function of income when solving the model with

endogenous ability. This considerable simpli�es the model solution.

For the production of the child's ability, we assume the following functional form, which is

very similar to and based on the translog functional form employed in Agostinelli and Wiswall

(2016)45

θ = lnA+ γ1 ln θ0 + γ2 ln Invest+ γ3 ln θ0 ln Invest+ ι,

where ι is a normally distributed error that is unknown by the parent at the time of choosing

Invest, and where A, γ1, γ2, and γ3 are parameters of the ability production function. After

the parent chooses Invest, the ability production shock ι is realized. The parent's problem

is then the same as in the baseline case: each year, the parent continues to make consump-

tion/saving decisions and chooses a parental transfer schedule when the agent reaches the

college enrollment choice. Therefore, increases in early childhood investment increase the

child's expected ability, but come at the cost of reduced consumption for the parent and

potentially lower transfers when the child reaches the enrollment decision.

We calibrate the parameters of the childhood ability production function to match the joint

distribution of parental income and ability we observe in our data and selected moments from

Agostinelli and Wiswall (2016). Details on the calibration are included in Appendix C.6. Dahl

and Lochner (2012) use changes in the EITC to instrument for family income and �nd that

a $1000 increase in family income leads to an increase in ability scores by 6% of a standard

deviation. We simulate an increase in yearly family income of parents by $1,000 in our model.

The increase in income leads to an average increase in AFQT scores of 2.2% of a standard

deviation across all children, and an increase of 5.1% of a standard deviation for children in

the lowest quintile. Therefore, the simulated responsiveness of ability with respect to parental

income is slightly smaller than but in line with Dahl and Lochner (2012).

The optimal �nancial aid schedule, graduation rates, and ability levels with endogenous

ability are shown in Figure 10. Panel 10(a) shows the new optimal �nancial aid schedule

when ability is endogenous. Compared to the baseline case when ability is exogenous, the

45Agostinelli and Wiswall (2016) estimate a model of early childhood developments with multiple periods
in which childhood skills are latent. Additionally, they use a broader concept of parental investment; the
investment we refer to here is strictly monetary.
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optimal aid schedule is now much higher, re�ecting that increases in �nancial aid are now much

more pro�table for the government. With endogenous ability, increases in �nancial aid lead

to increases in child ability, which increase tax payments of both marginal and inframarginal

children. The optimal aid schedule is still highly progressive. Panel 10(b) shows the graduation

rates evaluated at the optimal aid schedule with endogenous ability. Switching to the optimal

schedule leads to an increase in college graduation rates of over 10%, re�ecting that 1) the

optimal schedule is considerably more generous than the current schedule and 2) increases in

�nancial aid lead to larger increases in college-going when ability is endogenous.46

(a) Financial Aid (b) Graduation Rates

Figure 10: Financial Aid and Graduation with Endogenous Ability
Notes: The dashed-dotted (blue) line shows the optimal schedule when child's ability is endogenous.

Optimal �nancial aid with exogenous ability and current �nancial aid are also shown for comparison

in Panel (a). In Panel (b) we display the college graduation share by parental income group when

ability is endogenous with the optimal aid schedule and with the current aid schedule.

As emphasized by Caucutt and Lochner (2017) and Lee and Seshadri (2019), low income

parents may face borrowing constraints when their child is young and therefore unable to

adjust their investment in their child's ability in response to changes in education policy.

In Appendix C.7, we calculate the optimal aid schedule with endogenous ability under the

assumption that low income parents may be borrowing constrained when their child is young.

We �nd that the optimal progressivity of the system decreases as we increase the percentage of

low-education families who are borrowing constrained. However, the optimal schedule remains

more progressive than the current schedule in all cases.

46We show the end of childhood ability as a function of parental income under the current �nancial aid
schedule and under the optimal schedule in Section C.6. Switching to the optimal aid schedule leads to
substantial increases in child ability, especially for children in the lower end of the parental income distribution.
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8 Conclusion

This paper has analyzed the normative question of how to optimally design �nancial aid

policies for students. We �nd that optimal �nancial aid policies are strongly progressive. This

result holds for di�erent social welfare functions, assumptions on credit markets for students,

and assumptions on income taxation. Moreover, we �nd that a progressive expansion in

�nancial aid policies could be self-�nancing through higher tax revenue, thus bene�ting all

taxpayers as well as low-income students directly. It seems to be that �nancial aid policies

are a rare case with no classic equity-e�ciency trade-o� because a cost-e�ective targeting

of �nancial aid goes hand in hand with goals of social mobility and redistribution. We also

think that our results can be used for policy recommendations according to the criteria of

Diamond and Saez (2011):47 the economic mechanism is empirically relevant and of �rst

order importance to the problem, it is very robust and progressive �nancial aid systems are

clearly implementable, as they are universal across all OECD countries.

Future work could focus on adding heterogeneity in the quality of colleges, which would

allow for rich interactions with �nancial aid policies. In such a setting, it would seem natural

to let the government optimize over �nancial aid as a joint function of parental background and

college quality. In addition, college quality could adjust endogenously. Thinking more seriously

about these issues could also extend the scope of the analysis to the level of community colleges.

We leave that for future research.
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A Theoretical Appendix

A.1 Derivation of Equation 3

The Lagrangian for the government's problem reads as:

L =

∫
R+

∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI

+ ρ

{∫
R+

∫
χ

NT HNPV (X, I)1V Ej <V Hj k(X, I)dXdI

+

∫
R+

∫
χ

NT GNPV (X, I)1V Ej ≥V Hj P
C(X, I,G(I))k(X, I)dXdI

+

∫
R+

∫
χ

NT DNPV (X, I)1V Ej ≥V Hj

(
1− PC(X, I,G(I))

)
k(X, I)dXdI − F̄

}
.

The derivative w.r.t. G(I) is given by:

∂L
∂G(I)

=

∫
χ

1V Ej ≥V Hj
∂V E(X, I)

∂G(I)
h̃(X|I)dX (9)

+ ρ

∫
χ

{
PC(X, I,G(I))

∂NT GNPV (X, I)

∂G(I)
+
(
1− PC(X, I,G(I))

) ∂NT DNPV (X, I)

∂G(I)

}
h(X|I)dX

+ ρ

∫
χ

1Hj→Ej

{
PC(X, I,G(I))NT GNPV (X, I) +

(
1− PC(X, I,G(I))

)
NT DNPV (X, I)

−NT HNPV (X, I)
}
h(X|I)dX

+ ρ

∫
χ

∂PC(X, I,G(I))

∂G(I)

(
NT GNPV (X, I)−NT DNPV (X, I)

)
h(X|I)dX

Recall that 1Hj→Ej takes the value one if an individual of type j is pushed over the college

enrollment margin due to a small increase in �nancial aid.

The �rst term captures the direct utility increase of inframarginal enrollees due to receiving

more �nancial aid. The second term captures the direct �scal e�ect of paying more �nancial aid

to inframarginal students. The third term captures the �scal e�ect of additional enrollees. The

fourth e�ect captures the �scal e�ect due to the increase in the completion rate of inframarginal

students. The implied change in the enrollment and dropout rate has no direct �rst-order e�ect

on welfare: individuals that are marginal in their decision to enroll or not and to continue

studying or drop out, were just indi�erent between the two respective options, hence this

change in behavior has no e�ect on their utility.

The de�nitions of E(I) and ∆TE(I) directly imply that the third term equals the enrollment

e�ect in (3) multiplied by ρ. The de�nitions of ∆T C(I), E(I) and C(I) directly imply that

the fourth term equals the completion e�ect in (3) multiplied by ρ.
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Now it remains to be shown that the �rst and second term are equal to the mechanical

e�ect in (3). The application of the envelope theorem implies that the �rst term reads as

∫
χ

1V Ej ≥V Hj E

tmaxg∑
t=1

βt−1UE
c (·)

(
1 +

∂trEt (·)
∂G(I)

) t∏
s=1

(1V NDs ≥V Ds )
t−1∏
s=1

(
1− PrGrads (X)

) h̃(X|I)dXẼ(I).

(10)

The second term, using the de�nitions of NT GNPV (X, I) and NT DNPV (X, I), can be written

as

−ρ
∫
χ

tmaxg∑
t=1

1

1 + r

t∏
s=1

PE
t (X, I,G(I))h(X|I)dX. (11)

Adding (10) and (11), using the de�nition of the social marginal welfare weight yields equation

3.

A.2 More General Version of Equation 3 with Annual Dropout De-

cisions

We now show the generalization in which individuals can drop out each period. For this case,

we have to distinguish between individuals that drop out in di�erent periods. Hence, for the

education decision we have: e ∈ {H,G,D1, D2, ..., Dtmaxg
}, where Dt implies that individuals

drop out at the beginning of year t. Accordingly we can de�ne the net �scal contribution of

an individual of type (X, I) that drops out in period t by NT DtNPV (X, I):

NT DtNPV (X, I) =
T∑
s=t

(
1

1 + r

)s−1

E (T (ys)|X, I,Dt)− G(I)
t−1∑
s=1

(
1

1 + r

)s−1

.

We also have to de�ne the net �scal contribution of an individual that is enrolled in year tmaxg

NT Et
max
g

NPV (X, I) = Ptmaxg
(X, I,G(I))NT GNPV (X, I) +

(
1− Ptmaxg

(X, I,G(I))
)
NT Dt

max
g

NPV (X, I)

and for t = 2, 3, ..., tmaxg − 1:

NT EtNPV (X, I) = Pt(X, I,G(I))NT Et+1
NPV (X, I) + (1− Pt(X, I,G(I)))NT DtNPV (X, I).
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The Lagrangian for the government's problem reads as:

L =

∫
R+

∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI

+ ρ

{∫
R+

∫
χ

NT HNPV (X, I)1V Ej <V Hj k(X, I)dXdI

+

∫
R+

∫
χ

NT GNPV (X, I)1V Ej ≥V Hj P
C(X, I,G(I))k(X, I)dXdI

+

tmaxg∑
τ=1

[∫
R+

∫
χ

NT DτNPV (X, I)1V Ej ≥V Hj

τ−1∏
t=1

Pt(X, I,G(I)) (1− Pτ (X, I,G(I))) k(X, I)dXdI

]
− F̄

}
.

The FOC for G(I) shares the same basic structure as (9). However, here the �scal e�ects due

to change in dropout behavior are more involved:48

ρ

∫
χ

tmaxg −1∏
t=1

Pt(X, I,G(I))
∂Ptmaxg

(X, I,G(I))

∂G(I)

(
NT GNPV (X, I)−NT Dt

max
g

NPV (X, I)
)
h(X|I)dX

+ρ

tmaxg −1∑
τ=1

[∫
χ

τ−1∏
t=1

Pt(X, I,G(I))
∂Pτ (X, I,G(I))

∂G(I)

(
NT Eτ+1

NPV (X, I)−NT DτNPV (X, I)
)
h(X|I)dX

]
,

where we let P0(X, I,G(I)) = 1.

In short term notation, similar to that in (3), we can write

tmaxg∑
t=1

∂Cont(I)

∂G(I)

∣∣∣∣∣
Et(I)

∆T Con,t(I)Et(I)

where Cont(I) is the share of those enrollees with parental income I in period t, that continue

studying to year t+ 1. It is de�ned by

Cont(I) =
Et+1(I)

Et(I)

for t = 1, 2, .., tmaxg − 1 and

Contmaxg
(I) =

∫
χ
1V Ej ≥V Hj

∏tmaxg

s=1 Ps(X, I,G(I))h(X|I)dX

Etmaxg
(I)

.

where

E1(I) = E(I) =

∫
χ

1V Ej ≥V Hj h(X|I)dX.

and

Et(I) =

∫
χ

1V Ej ≥V Hj

t−1∏
s=1

Ps(X, I,G(I))h(X|I)dX.

48Again, changes in dropout behaviour have no direct welfare e�ect due to the envelope theorem.

43



Finally, the changes in tax revenue are de�ned by:

∆T Con,t(I) =

∫
χ

∆T Con,t(X, I)∂P (X,I,G(I))
∂G(I)

h(X|I)dX∫
χ
∂P (X,I,G(I))

∂G(I)
h(X|I)dX

where

∆T Con,t(X, I) = NT EtNPV (X, I)−NT DtNPV (X, I).

Hence, the equivalent to equation 3 is given by:

∂E(I)

∂G(I)
×∆T E(I) +

tmaxg∑
t=1

Et(I)
∂Cont(I)

∂G(I)

∣∣∣∣∣
Et(I)

∆T Con,t(I)− Ẽ(I)
(
1−WE(I)

)
.

A.3 Proof of Proposition 1

The government's problem reads as

max
G(I)

∫
R+

∫ θ̃(I)

θ

U ((1− τ)yH) dH̃(θ|I)dF̃ (I)

+

∫
R+

∫ θ

θ̃(I)

U (((1− τyH) (1 + θ)− (F − G(I)− tr(I)))) dH̃(θ|I)dF̃ (I)

+ λ

[∫
R+

∫ θ̃(I)

θ

τyH dH(θ|I)dF (I) +

∫
R+

∫ θ

θ̃(I)

(τyH (1 + θ)− G(I)) dH(θ|I)dF (I)− F̄

]
,

where, as in Section 2, H̃ and F̃ denote the distributions of Pareto weights which integrate up

to one and F̄ is some exogenous revenue requirement. All Pareto weights are non-negative.

The �rst-order condition for G(I) is given by:

h(θ̃(I)|I)
∣∣∣ ∂θ̃(I)

∂G(I)

∣∣∣ (τyhθ̃(I)− G(I)
)
−
(

1−H(θ̃(I)|I)
)

(1−WE(I)) = 0, (12)

where WE(I) is average social marginal welfare weight for enrollees with parental income I

and formally given by:

WE(I) =

∫ θ
θ̃
U ′ (((1− τyH) (1 + θ)− (F − G(I)− tr(I)))) dH̃(θ|I)f̃(I)

λ(1−H(θ|I))f(θ)
.

Using
∂θ̃(I)

∂G(I)
= − 1

yH(1− τ)
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and inserting into (12) gives the �rst-order condition explained in the main text just before

Proposition 1. Solving for G(I) gives Proposition 1.

Unweighted Utilitarianism with U(x)=x. If we assume h̃(θ|I) = h(θ|I) for all (θ, I)

and further assume U(x) = x, then, we obtain

WE(I) =
1

λ
∀ I,

hence the welfare weights are the same for all parental income groups. The value for λ is

measures the marginal value of public funds and therefore depends on F̄ . To get an under-

standing of the optimal value for λ, consider the perturbation around the optimum, where

G(I) is increased by δ → 0 for all I. This basically implies changing the lump sum component

of G(I) and is equivalent to just integrating over (12). The impact on welfare is given by:

∫
I

(1−WE(I))
(

1−H(θ̃(I)|I)
)
dF (I) +

∫
I

h(θ̃(I)|I)
∣∣∣ ∂θ̃(I)

∂G(I)

∣∣∣ (τyhθ̃(I)− G(I)
)
dF (I) = 0.

and hence for WE(I) = 1
λ
∀ I:

∫
I

(
1− 1

λ

)(
1−H(θ̃(I)|I)

)
dF (I) +

∫
I

h(θ̃(I)|I)
∣∣∣ ∂θ̃(I)

∂G(I)

∣∣∣ (τyhθ̃(I)− G(I)
)
dF (I) = 0.

Here we see that λ = 1 would be consistent with G(I) = τyhθ̃(I) for all I. Recall that the

government budget constraint is given by:

∫
R+

∫ θ̃(I)

θ

τyH dH(θ|I)dF (I) +

∫
R+

∫ θ

θ̃(I)

(τyH (1 + θ)− G(I)) dH(θ|I)dF (I)− F̄ = 0.

If the exogenous revenue requirement F̄ is such that the budget constraint holds for G(I) =

τyhθ̃(I) for all I, then we obtain λ = 1 and the formula in Proposition 1 becomes

G(I) = τ (F − tr(I)) . (13)

Assume that instead the budget constraint would be violated and this level of �nancial aid

can not be �nanced. Then we have λ > 1 and hence WE(I) < 1 ∀ I. Generally, we could also

have the case where λ < 1. E.g. assume that F̄ = −∞. In this case, there would be in�nitely

many public funds available for �nancial aid and therefore the marginal value of public funds

would be zero. But of course this is only of theoretical interest.

The fact that the marginal value of public funds is not equal to unity even though pref-

erences are linear may seem in contrast to the optimal income tax literature, where it is a
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standard result that the marginal value of public funds is equal to one for quasi-linear pref-

erences and in other words the average welfare weights is equal to one, see e.g. Saez (2002).

The reason is that the policy instruments that we consider are such that there is no lump

sum element. While the �nancial aid schedule G(I) of course has an intercept G(0) that can

optimally be chosen, this is no lump sum transfer in the classical sense because it only reaches

college students and not individuals who forgo college. Therefore, varying this lump sum

component also has incentive e�ects on the college decision and one cannot just pay out a

dollar to everyone without a�ecting behavior.

A.4 Proof of Corollary 1

Di�erentiating (5) w.r.t. I yields:

G ′(I) = −τtr′(I) + (1− τ)
∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

(tr′(I) + G ′(I)) (1−WE)

where we used θ̃(I) = F−tr(I)−G(I)
(1−τ)yH

. and therefore θ̃′(I) = −tr′(I)−G′(I)
(1−τ)yH

. Solving for G ′(I) we

get

G ′(I) =
−τtr′(I) + (1− τ)

∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

tr′(I)(1−WE)

1− (1− τ)
∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

(1−WE)

which proves Corollary 1 since by assumption tr′(I) > 0 and log concavity of the skill distri-

bution implies
∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

< 0.

A.5 Proof of Corollary 2

Di�erentiating (5) w.r.t. I yields:

G ′(I) = −τtr′(I)+(1−WE) (1− τ)

∂
(

1−H(θ̃(I)|I)
h(θ̃(I)|I)

)
∂θ̃(I)

(tr′(I) + G ′(I))− yH (1− τ)
∂
(

1−H(θ|I)
h(θ|I)

)
∂I

∣∣∣∣∣
θ=θ̃(I)


Hence we obtain

G ′(I) =

−τtr′(I) + (1−WE) (1− τ)

∂( 1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

tr′(I)− yH (1− τ)
∂( 1−H(θ|I)

h(θ|I) )
∂I

∣∣∣∣∣
θ=θ̃(I)


1− (1− τ)

∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

(1−WE)
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which proves Corollary 2 since by assumption tr′(I) > 0, log concavity of the skill distribution

implies
∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

< 0 and we assumed

∂
(

1−H(θ|I)
h(θ|I)

)
∂I

> 0 ∀ θ, I.

A.6 Optimal Income Taxation

The planner's problem is the same as in (1) with the di�erence that the planner also optimally

chooses the income tax schedule T (·). Notice that the formula for optimal �nancial aid policies
is unaltered. We allow the tax function T (·) to be arbitrarily nonlinear in the spirit of Mirrlees

(1971). We restrict the tax function to be only a function of income and to be independent

of the education decision. This tax problem can either be tackled with a variational or tax

perturbation approach (Saez, 2001; Golosov et al., 2014; Jacquet and Lehmann, 2016) or with

a restricted mechanism design approach for nonlinear history-independent income taxes that

we explore in Findeisen and Sachs (2017).

We here provide a heuristic version of the former approach within our model. For notational

convenience, we consider the model of Section 2 with the assumption that individuals can only

dropout at the beginning of period 3. We also assume that agents can only graduate in 4 years.

Consider an increase of the marginal tax by an in�nitesimal amount dT ′ in an income

interval of in�nitesimal length [y∗, y∗ + dy]. As a consequence of this reform, all individuals

with y > y∗ face an increase of the absolute tax level of dT ′dy. The tax reform therefore

induces a mechanical increase in welfare of

∆WMR(y∗) = ρdT ′dy
T∑
t=1

(
1

1 + r

)t−1 ∫ ∞
y∗

ht,H(y)dy × sH

+ ρdT ′dy
T∑
t=3

(
1

1 + r

)t−1 ∫ ∞
y∗

ht,D(y)dy × sD

+ ρdT ′dy
T∑
t=5

(
1

1 + r

)t−1 ∫ ∞
y∗

ht,G(y)dy × sG

through the tax revenue increase (in net present value). ht,e(y) is the density of income of

individuals with education level e in period t and se is the overall share of individuals with

education level e. Both, the income densities and the education shares are endogeneous w.r.t.

to taxes, we get to this below.
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Note that this increase in tax payment also has mechanical e�ects on individual utilities

which adds up to the following welfare e�ect

∆WMU(y∗) = dT ′dy
T∑
t=1

(
1

1 + r

)t−1 ∫ ∞
y∗

E (Uc|yt = y)ht,H(y)dy × sH

+ dT ′dy
T∑
t=3

(
1

1 + r

)t−1 ∫ ∞
y∗

E (Uc|yt = y)ht,D(y)dy × sD

+ dT ′dy
T∑
t=5

(
1

1 + r

)t−1 ∫ ∞
y∗

E (Uc|yt = y)ht,G(y)dy × sG.

Now we turn to the endogeneity of education shares. First of all some individuals will change

their initial enrollment decision. We de�ne 1y
∗

Hj→Ej to take the value one if an individual of

type j is marginal in the enrollment decision w.r.t. to a one dollar tax increase for earnings

above y∗. Then, the welfare e�ect of individuals changing their enrollment decision due to a

small increase in T ′(y∗) is given by:

∆WE(y∗) = ρdT ′dy
∫
R+

∫
χ

1
y∗

Hj→Ej

{
NT ENPV (X, I)−NT HNPV (X, I)

}
h(X|I)dXdI.

Similarly, the probability to continue college and not drop out is endogenous w.r.t. taxes, i.e.

we have P (X, I,G(I), T (·)). The change in welfare due to the change in dropout behavior,

with some abuse of notation, is simply given by:

∆WD(y∗) = ρ

∫
R+

∫
χ

∫ ∞
y∗

∂P (X, I,G(I), T (·))
∂T (y)

dy
{
NT GNPV (X, I)−NT DNPV (X, I)

}
h(X|I)dXdI.

Finally, an increase in the marginal tax rate also a�ects labor supply behavior for individuals

within the interval [y∗, y∗+dy]. Individuals within this in�nitesimal interval change their labor

supply by

∂y∗t
∂T ′

dT ′ = −εy∗t ,1−T ′
y∗t

1− T ′
dT ′.

Whereas this change in labor supply has no �rst-order e�ect on welfare via individual utilities

by the envelope theorem, it has an e�ect on tax revenue, which is given by:

∆WL(y∗) =
T ′(y∗)

1− T ′(y∗)
y∗εy,1−T ′ × dT ′×(

sH

T∑
t=1

(
1

1 + r

)t−1

ht,H(y∗) + sD

T∑
t=3

(
1

1 + r

)t−1

ht,D(y∗) + sG

T∑
t=5

(
1

1 + r

)t−1

ht,G(y∗)

)
.

Since this reform must not have any non-zero e�ect on welfare if the tax system is optimal,

we have to have
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∆WMR(y∗) + ∆WMU(y∗) + ∆WE(y∗) + ∆WD(y∗) + ∆WL(y∗) = 0 (14)

which provides an implicit characterization of T ′(y∗).
Finally, the optimal level for the lump-sum element of the tax schedule T (0) is implicitly

characterized by

∆WMR(0) + ∆WMU(0) + ∆WE(0) + ∆WD(0) = 0.

This optimal tax approach is related to the formulas of Saez (2002) and Jacquet et al.

(2013).

To implement this formula numerically, we follow a guess and verify approach. Hence, we

start with a guess for the tax schedule and then evaluate (14).49 We then slightly adjust

T ′(y∗) to make (14) closer to zero (but keep ∆WMR(y∗) + ∆WMU(y∗) + ∆WE(y∗) + ∆WD(y∗)

�xed, i.e. we only adjust ∆WL(y∗)). We then calculated the new allocation for this adjusted

schedule and evaluate (14) for income levels again and so on. We proceed until convergence.50

B Estimation and Calibration

B.1 Current Tax Policies and Tuiton

To capture current tax policies, we use the approximation of Heathcote et al. (2017), which

has been shown to work well in replicating the US tax code. Since this speci�cation does not

contain a lump-sum element, we slightly adjust this schedule. We set the lump sum element

of the tax code T (0) to minus $1,800 a year. For average incomes this �ts the deduction in the

US-tax code quite well.51 For low incomes this re�ects that individuals might receive transfers

such as food stamps.52

For tuition costs, we take average values for the year 2000 from Snyder and Ho�man

(2001) for the regions Northeast, North Central, South, and West, as they are de�ned in the

NLSY. We also take into account the amount of money that is spent per student by public

appropriations, which has to be taken into account for the �scal externality. The average

values are $7,434 for annual tuition and $4,157 for annual public appropriations per student.

Besides these implicit subsidies, students receive explicit subsidies in the form of grants and

tuition waivers. We estimate how this grant receipt varies with parental income and ability

49In fact a more complicated version of (14) which accounts for dropout behavior in every period and also
accounts for stochastic graduation.

50In each iteration, we also optimally choose the �nancial aid schedule G(I) given the tax schedule in the
respective iteration.

51Guner et al. (2014) report a standard deduction of $7,350 for couples that �le jointly. For an average tax
rate of 25% this deduction could be interpreted as a lump sum transfer of slightly more than $1,800.

52The average amount of food stamps per eligible person was $72 per month in the
year 2000. Assuming a two person household gives roughly $1,800 per year. Source:
http://www.fns.usda.gov/sites/default/�les/pd/SNAPsummary.pdf
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in Appendix B.2 using information provided in the NLSY97. We �nd a strong negative e�ect

of parental income on �nancial aid receipt. Additionally, we can capture merit-based grants

by the conditional correlation of AFQT scores with grant receipt. Finally, we calibrate the

exogenous budget element F̄ in the following way. For the current U.S. polices, we calculate

the present value of �nancial aid spending and the present value of tax revenues collected from

the cohorts that we consider (born between 1980 and 1984 from the NLSY97) and obtain F̄

from the di�erence between the two.

We categorize the following 4 regions:

• Northeast: CT, ME, MA, NH, NJ, NY, PA, RI, VT

• North Central: IL, IN, IA, KS, MI, MN, MO, NE, OH, ND, SD, WI

• South: AL, AR, DE, DC, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN , TX, VA, WV

• West: AK, AZ, CA, CO, HI, ID, MT, NV, NM, OR, UT, WA, WY

We base the following calculations on numbers presented by Snyder and Ho�man (2001). Table

313 of this report contains average tuition fees for four-year public and private universities.

According to Table 173, 65% of all four-year college students went to public institutions,

whereas 35% went to private institutions. For each state we can therefore calculate the

average (weighted by the enrollment shares) tuition fee for a four-year college. We then use

these numbers to calculate the average for each of the four regions, where we weigh the di�erent

states by their population size. We then arrive at numbers for yearly tuition & fees of $9,435

(North East), $7,646 (North Central), $6,414 (South) and $7,073 (West). For all individuals

in the data with missing information about their state of residence, we chose a country wide

population size weighted average of $7,434.

Tuition revenue of colleges typically only covers a certain share of their expenditure. Figures

18 and 19 in Snyder and Ho�man (2001) illustrate by which sources public and private colleges

�nance cover their costs. Unfortunately no distinction between two and four-year colleges is

available. From Figures 18 and 19 we then infer how many dollars of public appropriations

are spent for each dollar of tuition. Many of these public appropriations are also used to

�nance graduate students. It is unlikely that the marginal public appropriation for a bachelor

student therefore equals the average public appropriation at a college given that costs for

graduate students are higher. To solve this issue, we focus on institutions �that primarily

focus on undergraduate education� as de�ned in Table 345. Lastly, to avoid double counting

of grants and fee waivers, we exclude them from the calculation as we directly use the detailed

individual data about �nancial aid receipt from the NLSY (see Section B.2). Based on these

calculations we arrive at marginal public appropriations of $5,485 (Northeast), $4,514 (North

Central), $3,558 (South), $3,604 (West) and $4,157 (No information about region).
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B.2 Estimation of Grant Receipt

Grants and tuition subsidies are provided by a variety of di�erent institutions. Pell grants,

for example, are provided by the federal government. In addition, there exist various state

and university programs. To make progress, similar to Johnson (2013) and others, we go on

to estimate grant receipt directly from the data.

Next, we estimate the amount of grants conditional on receiving grants as a Tobit model:

gri = αgr + f(Ii) + βgr4 AFQTi + βgr5 depkidsi + εgri . (15)

where f(Ii) is a spline function of parental income and εgri represents measurement error.

Besides grant generosity being need-based (convexly decreasing), generosity is also merit-

based as β̂gr4 > 0 and increases with the number of other dependent children (besides the

considered student) in the family.

Table 3: OLS for Grants

AFQT Dependent Children

Coe�cient 39.40*** 321.75**
Standard Error ( 5.03) (106.39)

N=968. * p ≤ 0.10, ** p ≤ 0.05, *** p ≤ 0.01.

B.3 Wage Estimation

We specify and estimate wage life-cycle paths as follows. Our procedure �rst estimates labor

earnings life-cycle pro�les and then calibrates the respective wage pro�les based on those

estimates in a second step. Speci�cally, we use the following functional form for earnings y :

∀ e = H,G : log yeit = βes0 + βeθ log θi + βet1t+ βet2t
2 + βet3t

3 + ve∗i . (16)

We estimate separate parameters for high school graduates and college graduates.53 The

parameter βeθ captures di�erent returns to ability for agents of a given education level. The

extent to which the college wage premium is increasing in ability is determined by the ratio
βGθ
βHθ

. We �nd a ratio larger than 1, which implies a complementary relationship between initial

ability and education. Our estimates can be found in Table 4. ve
∗
i is a random e�ect that

captures persistent di�erences in wages conditional on the agent's schooling choice. We assume

that agents do not know the value of ve
∗
i at the beginning of the model, but that its value is

revealed as soon as the agents �nish their education and enter the labor market. Uncertainty

53Dropouts have the same wage parameters as high school graduates except for the constant term. This
gives us a very good �t for the relative earnings of dropouts, consistent with the evidence in Lee et al. (2017).
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over ve
∗
i creates uncertainty over an agent's returns to college. After ve

∗
i there is no further

uncertainty about an agent's wage path.

The age earnings coe�cients βet1, β
e
t2 and β

e
t3 are education dependent but independent from

gender. However, since we assume di�erent labor supply elasticities for men and women, the

implied wage life-cycle pro�les will di�er across gender because how a given earnings path

maps into wages depends on the labor supply elasticity. The age coe�cients are estimated

from the NLSY79 since individuals from the NLSY97 are only observed until their mid-30s. In

sum, this procedure pins down a stochastic distribution of potential life-cycle wage paths for

each individual, which depend on gender, ability, and the education decisions. We demonstrate

in Section 4.3 that we obtain life-cycle paths of earnings and wages which are consistent with

the data.54

We estimate the age coe�cients βet1, β
e
t2 , βet3 using panel data from the NLSY79 since

individuals in the NSLY97 are too young (born between 1980 and 1984) such that we can

infer how wages evolve once individuals are older than 35. In the second step, we build

the transformed variable l̃og yeit = log yeit − βet t − βet2t
2 − βet3t

3, which takes out age a�ects

from yearly log incomes. Using the NLSY97, we estimate the relationship of log income with

gender and log AFQT, estimating separate models and coe�cients by education level. We use

a random-e�ects estimator and assume normality, yielding education speci�c variances for vei .

The estimates are displayed in Table 4. There is a signi�cant college premium in the model,

although the high-school constant is larger, because we have used education dependent age

pro�les.

College Educated

Female Log AFQT Education Constant Variance vi

Coe�cient -0.14*** 0.47*** 3.06*** 0.42
Standard Error (0.02) (0.07) (0.35)

High-School Educated

Female Log AFQT Education Constant Variance vi

Coe�cient -0.25*** 0.31*** 7.11*** 0.36
Standard Error (0.01) (0.03) (0.35)

Table 4: Regressions: Income

Notes: Random e�ect models, estimated with NLSY9. Dependent variable is log yearly income,

cleaned for age e�ects. Age e�ects are obtained by estimating a cubic polynomial on the NLSY79.

These age coe�cients are available upon request. N=10,165 (College) and N=19,955 (High-School) .

* p ≤ 0.10, ** p ≤ 0.05, *** p ≤ 0.01.

54We use these same parameter estimates to calculate life-cycle earnings for parents. We choose the id-
iosyncratic competent of earnings, ve∗i , to generate earnings at age 45 equal to the parental earnings levels we
observe in the data.
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Next, we explain how to go from the estimated income to the wage pro�les. The reason

why we do not estimate wage pro�les directly is that we append Pareto tails to the income dis-

tribution on which more reliable information is available. Top incomes are underrepresented

in the NLSY as in most survey data sets. Following common practice in the optimal tax liter-

ature (Piketty and Saez, 2013), we therefore append Pareto tails to each income distribution,

starting at incomes of $150,000. We set the shape parameter α of the Pareto distribution to

1.5 for all income distributions.

Next we describe the mapping from y to w as in Saez (2001). Given the utility function we

assume with no income e�ects, in each year individuals solve a static labor supply problem

where optimal labor supply in that year only depends on the current wage (which evolves over

the life-cycle) and marginal tax distortions. It is easy to show that the �rst-order condition

for an individual facing a marginal tax rate schedule is

lnw =
ε+ τ

1 + ε
ln y − 1

1 + ε
ln(λ (1− τ)),

if the tax function is of the form T (y) = y − ρy1−τ . Using the estimates from the regression

model, we can express the wage for a given type (age, gender, ability, education) as at age t:

lnwit =
ε+ τ

1 + ε

(
β̂es0 + β̂eθ log θi + β̂et t+ β̂et2t

2 + β̂et3t
3 + ve

∗

i

)
− 1

1 + ε
ln(λ (1− τ)).

B.4 Value Functions During College

Agents do not graduate and remain in college with probability
(
1− PrGradt (θ)

)
, which depends

on the agent's ability level θ. Further, we allow the interest rate the agent receives in college

to vary by the agent's assets (positive or negative) and by the agent's parental income, to

re�ect features of the Sta�ord loan program.

V
E,`Et
t

(
X, I, at, ε

`Et
t

)
= max

ct
[UE

(
ct, `

E
t , X, ε

`Et

)
+

β
{(

1− PrGradt (θ)
)
E
[
V E
t+1 (X, I, at+1, εt+t)

]
+ PrGradt (θ)E

[
V W
t+1 (X, e = G, at+1, wt+1)

]}
(17)

subject to

ct = `Et ω + at (1 + r (at, I))− at+1 −FRegion + G (X, I)

and

at+1 ≥ āEt+1,

where V E
t+1 (X, I, at+1, εt+t) and εt+t are de�ned in the main body. The term

[
V W
t+1 (X, e = G, at+1, wt+1)

]
is the expected value of being a college graduate in the workforce in year t + 1, where the

expectation is taken over the permanent skill shock. We allow tuition, FRegion, to depend on
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the agent's region. This allows the model to capture di�erences in tuition across geographic

regions and is also helpful for identifying the parameters of the model.

B.5 Details: Parent's Problem

The parent's problem begins when the parent turns 20 years old. Each year the parent receives

income and makes consumption/saving decisions. We assume that all parents make transfers

to their children at the year which corresponds to t = 1 for the child and an age of 43 for the

parent.55 Parents start the model with 0 assets and live until age 65.

For all years when the transfer is not given, the parent simply chooses how much to consume

and save. Let V P
t denote the parent's value function in year t. We can write this as

V P
t

(
X̃, I, aPt

)
= max

c

[
c1−γ

1− γ
+ βV P

t+1

(
X̃, I, aPt+1

)]
,

subject to:

c = yPit + (1 + r) aPit − aPit+1

where aPt is the parent's assets in year t and yPit is the parent's income in year t.56 Note that

a parent's state space does not include the child's idiosyncratic preference for college εE.

In the year of the transfer, the parent also receives utility from transfers. In this year, we

write the parent's Bellman equation as

V P
t

(
X̃, I, aPt

)
= max

c,trhs,trcol

[
c1−γ

1− γ
+ F

(
trhs, trcol, X̃, I

)
+ βE

[
V P
t+1

(
X̃, I, aPt+1 − tre

)]]
subject to:

c = yPit + (1 + r) aPit − aPit+1.

where trhs and trcol are the transfers o�ered conditional on the child's education choice, and tre

are the realized transfers.57 As the parent must commit to transfers before the child's college

preference shock is realized, the child's college choice and therefore the value of tre is stochastic

at the time the parent chooses the transfer in the eyes of the parent. F
(
trhs, trcol, X̃, I

)
is

55This will correspond to age 18 of the child if the parent gave birth to the child at age 25. This is the
median age a mother gave birth to their child in the NLSY97.

56We set the risk aversion for parents γ = 1 outside of estimation such that the estimate of the child's γ is
identi�ed only by decisions of the child, and is not identi�ed by the amount of parental transfers given.

57In the data, we follow Johnson (2013) we calculate transfers as the sum of monetary transfers and the
monetary bene�t of living at home. We assume that the monetary bene�t of living at home is given exogenously
and only the actual monetary transfers are included in the parent's budget constraint. We assume that the
monetary bene�t of living at home is equal to the average amount conditional on parental income and the
child's education choice.
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the expected utility the parent receives from the transfer schedule trhs, trcol and is de�ned in

the main text.

We assume parents must also pay transfers to the agent's siblings. Therefore, if the child

has nsibs siblings, the child's parents also pay nsibs × t̄r (nsibs, I) out of their budget to

the other siblings, where t̄r (nsibs, I) is the predicted level of parental monetary transfers for

children with nsibs and parental income of I, unconditional of the child's education choice.

We predict t̄r (nsibs, I) by regressing monetary transfers on parental income separately for

each number of siblings we observe in the data.

Parent's Earnings Pro�le Calibration We assume that parental earnings are determined

by a similar process to the child's earnings. Speci�cally, parental earnings are given by

∀ e = H,G : log yPt = βParEdut1 ParAget + βParEdut2 ParAge2
t + βParEdut3 ParAge3

t + vP .

where ParAget is the parent's age in period t. The age coe�cients, β
ParEdu
t1 , βParEdut2 , and βParEdut3

are taken from the child's earnings regression. We assume that the parent's age coe�cients

are given by the college age coe�cients if at least one parent has attended college, otherwise

the parent's age coe�cients are given by the age coe�cients for a child that has not attended

college.

The term vP represents persistent, idiosyncratic di�erences in earnings across parents.

We assume that we observe the parental income variable I when parents are 40 years old.

Therefore, we must have y40 = I for each parent we observe in data. We therefore choose vP

such that the predicted parental income at age 40 is equal to the observed parental income

variable I. We can write this as

vP = log I −
(
βParEdut1 ParAget + βParEdut2 ParAge2

t + βParEdut3 ParAge3
t

)
.

B.6 Likelihood Function

Assume that the econometrician observes transfers tre,oi , which di�er from true transfers, tre?i ,

by an error term etr. Further, we assume this error term is normally distributed: etr ∼
N
(
0, σe

tr)
. We suppress all dependencies for notational convenience. Then, given parameters

Γ, the likelihood contribution of an agent who graduates from college after TEi years, has a

sequence of work in college decisions of
{
`Eit
}TEi
t=1

, and has observed college transfers trE,oi is58

58The probability of this event in fact also depends on the graduation probabilities PrGradt . But these are
just constant factors in the likelihood, which is why refrain from putting them here.
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Li
(
ei = G, trE,oi ,

{
`Eit
}TEi
t=1
|Γ
)

=

Pr (E) fN

(
trE?i − tr

E,o
i

σetr

)
1

σetr

 TEi∏
t=1

Pr
(
`Eit
) ,

(18)

where fN is the standard normal PDF, and where the probability of initially enrolling in

college, Pr (E), and the choice probability of not dropping out and working `Eit in college,

Pr
(
`Eit
)
, are given by the extreme-value choice probabilities as

Pr (E) =
exp

(
Ṽ E/σE

)
exp

(
Ṽ E/σE

)
+ exp

(
Ṽ H/σE

)
and

Pr
(
`Et
)

=
exp

(
Ṽ
E,`Et
t /(σ`

E
λ)
)(∑

`∈{0,PT,FT} exp
(
Ṽ E,`
t /(σ`

E
λ)
))λ−1

(
exp

(
Ṽ D − δ/σ`E

))
+
(∑

`∈{0,PT,FT} exp
(
Ṽ E,`
t /(σ`Eλ)

))λ ,
where σE and σ`

E
are parameters governing the variance of the enrollment shock and college

working shock, respectively, and λ is a nesting parameter and where value functions with

tildes represent the value function minus the idiosyncratic preference draws.

The likelihood contribution of an agent who drops out in year TDi , has a sequence of work

in college decisions of
{
`Eit
}T dropout−1

t=1
, and has observed college transfers trE,oi is

Li
(
ei = D, trE,oi ,

{
`Eit
}TDi −1

t=1
|Γ
)

=

Pr (E) fN

(
trE?i − tr

E,o
i

σetr

)
1

σetr

TDi −1∏
t=1

Pr
(
`Eit
)Pr (DTD) ,

(19)

where the probability of dropping out, Pr (DTD), is given by the extreme value choice proba-

bilities as

Pr (DTD) =

(
exp

(
Ṽ D
TD/σ

`E
))

(
exp

(
Ṽ D
TD
/σ`E

))
+
(∑

`∈{0,PT,FT} exp
(
Ṽ E,`
TD

/(σ`Eλ)
))λ .

The likelihood function of an agent who enters the labor force directly and is observed with

transfers trH,oi is given by
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Li
(
ei = H, trH,oi |Γ

)
= (1− Pr (E)) fN

(
trH?i − tr

H,o
i

σetr

)
1

σetr
. (20)

We therefore choose the parameters Γ to maximize the log likelihood:

max
Γ

∑
i

logLi (·|Γ) .

B.7 Identi�cation

B.7.1 Identi�cation of Main Parameters

The parameter γ and the parameter governing the variance of the college-enrollment preference

shock, σE, play crucial roles in our analysis as they determine the extent to which increasing

�nancial aid a�ects the college enrollment decision. Higher values of σE and lower values

of γ imply a smaller elasticity of enrollment with respect to increases in �nancial aid. These

parameters are jointly identi�ed by the relationship between enrollment and parental income of

otherwise similar individuals. Enrolling in college will generally imply lower net income while

enrolled in college and higher income later in life. To the extent that borrowing constraints

are e�ective and that parental transfers are increasing in parental income, children from lower-

income backgrounds will not be able to smooth consumption and therefore will have lower

consumption in their early life. The parameter γ determines the cost of not being able to

smooth consumption early in life. A high value of γ therefore implies low college enrollment

for individuals close to the borrowing constraint.

Furthermore, exclusion restrictions in the grant function help us to identify the elasticity

of college going with respect to �nancial aid. Tuition varies by region but region does not

enter the earnings function or utility function. Therefore, similar to Heckman et al. (1998),

variation in tuition levels creates variation in the value of college enrollment which helps us to

identify γ and σE. In Section B.7.2 we use a simple example to build intuition on how these

two parameters are separately identi�ed.

Additionally, the extent to which poor students are more likely to work than rich students

will be governed by γ; this tells us how much more students who are close to the borrowing

constraint are willing to work relative to those who are not. As such, we can identify γ by

comparing the labor supply decisions of poor students with those from rich students.

The psychic cost of college, κX , is identi�ed by di�erent rates of attending college by

ability, gender, and parental education, after controlling for di�erences in utility coming from

consumption and di�erences in future earnings. The parameters governing the value of working

in college, ζ, σ`
E
, and λ, are jointly identi�ed by variation in college labor supply choices

across agents and across periods. Speci�cally, the parameter vector ζ is identi�ed by di�erent
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rates of working in college after controlling for di�erences in utility coming from consumption

and di�erences in future earnings. The parameter governing the variance of the labor supply

shock, σ`
E
, is identi�ed by variation in the timing of working in college decisions. For example,

suppose that σ`
E

= 0. Then the labor supply decisions of identical agents would be exactly

the same in each period. A larger σ`
E
implies more variation in the labor supply choices of

identical agents and across periods. The nesting parameter λ, is identi�ed by the substitution

patterns across labor supply decisions and dropping out. The warm-glow parameters, φ and

cb, are identi�ed by the relationship between parental income and parental transfers. A larger

value of φ increases the derivative of parental transfers on parental income. Decreasing cb

increases the level of transfers overall. Warm-glow utility only depends on the amount of

transfers given, not on other things that may enter the child's problem (i.e., ability, tuition,

number of siblings). The degree to which parental transfers respond to di�erent children's

characteristics will instead be determined by the strength of the altruism motive. Therefore,

any di�erences in parental transfers across student characteristics will identify ω. For example,

if students who face higher tuition levels generally receive higher parental transfers, this will

identify ω and give us a sense of how much we expect parental transfers to be crowded out

by �nancial aid. Parents' paternalism parameters, ξ0 and ξParEd, are identi�ed by the ratio

of college parental transfers to high school parental transfers. A higher value of ξ0 implies

higher transfers for children going to college relative to transfers for children entering the labor

force directly. Finally, the parameter governing the standard deviation of observed parental

transfers, σe
tr
, is identi�ed by the variance in observed parental transfers of identical agents.

B.7.2 Identi�cation in a Simpli�ed Model

In this section we use a simple model to show how the parameter governing the the agents'

risk aversion, γ, is separately identi�ed from the variance of the idiosyncratic taste for college

σE.

Consider a simple static model where agents make a discrete choice over options j, rep-

resenting schooling options. For an agent i, each option has an associated income Yij which

could represent, for example, how much income an agent has left for consumption net of tuition

costs. Let an agent's choice speci�c utility be given by:

uij =
c1−γ
ij

1− γ
+ κj + σεij

where κj is a parameter that is common to all agents who choose option j and εij is an extreme

value-type I preference parameter. Collectively, we can think of − (κj + εij) as the psychic

cost of option j. As this is a static model, let cij = Yij.

Note that (1− γ) shows up in two places in the utility function. First it shows up as

the denominator of
c1−γij

1−γ and therefore scales utility from consumption. This scaling factor
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alone is not separately identi�ed from the variance of the error term σ. However, (1− γ) also

shows up as the exponent on consumption, and therefore dictates the curvature of utility from

consumption. This is crucial for separately identifying γ from σ. Essentially if γ is large (and

(1−γ) small), then agents with lower levels of income will behave di�erently than agents with

higher levels of income.

Suppose we can divide agents i into several di�erent �regions�. All agents in a given region

r face the same menu of incomes across options. We will therefore write all choice speci�c

incomes as Yrj. Note that agents across regions all have same preferences but face di�erent

income levels, representing di�erences in tuition across regions, di�erences in wage income in

college, or di�erences in parental transfers.

The probability that an agent in region r chooses option j is given by:

Prj =

exp

(
Y 1−γ
rj

σ(1−γ)
+

κj
σ

)
∑

j′ exp

(
Y 1−γ
rj′

σ(1−γ)
+

κj′

σ

)
We can then write the log ratio of choice probabilities of choosing option j over k for agents

in region r:

log
Prj
Prk

=
1

σ

[(
Y 1−γ
rj

(1− γ)
+ κj

)
−
(

Y 1−γ
rk

(1− γ)
+ κk

)]
(21)

Now consider the di�erence in this log ratio between agents in region r and agents in region

r̂:

log
Prj
Prk
− log

Pr̂j
Pr̂k

=
1

(1− γ)σ

[(
Y 1−γ
rj − Y 1−γ

rk

)
−
(
Y 1−γ
r̂j − Y 1−γ

r̂k

)]
(22)

Before completing the proof, we consider a simple example here to build intuition. Suppose

agents in region r̂ are poorer by a positive amount τ for both options, relative to agents

in region r. That is: Yr̂j = Yrj − τ and Yr̂k = Yrk − τ . Then γ = 0 would imply that

log
Prj
Prk
− log

Pr̂j
Pr̂k

= 0� the ratio of choice probabilities in the poor region is equal to the ratio

in the rich region. Larger γ implies that the poorer region will choose the relatively higher

income option more relative to the richer region.

Consider now a third region, r̃. We now also have

log
Prj
Prk
− log

Pr̃j
Pr̃k

=
1

(1− γ)σ

[(
Y 1−γ
rj − Y 1−γ

rk

)
−
(
Y 1−γ
r̃j − Y 1−γ

r̃k

)]
(23)

combined with 22, this gives us two equations and two unknowns. Further, taking the ratio

of 22 and 23 yields:

log
Prj
Prk
− log

Pr̂j
Pr̂k

log
Prj
Prk
− log

Pr̃j
Pr̃k

=

(
Y 1−γ
rj − Y 1−γ

rk

)
−
(
Y 1−γ
r̂j − Y 1−γ

r̂k

)(
Y 1−γ
rj − Y 1−γ

rk

)
−
(
Y 1−γ
r̃j − Y 1−γ

r̃k

)
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Table 5: Maximum Likelihood estimates

Estimate Standard Error

College Utility: UE (c, `) = c1−γ

1−γ − κθ,d − ζ
`E + ε`

E

it

Curvature of Utility γ 1.9 0.0057
No work ζ0 0 (Normalization)
Part time ζ1 0.057 3.6?

Full time ζ2 0.18 4.1?

Standard Deviation of Enrollment Shock σ{E} 7.8? .069?

Dropout cost δ 1.2 1.7?

Standard Deviation of Working Shock σ{`
E} 0.40 .0078?

Nesting Parameter λ 0.59 0.38?

Psychic Cost: κθ,d = κ0 + κθ log (θi) + κfemI (s = female) + κParEdParEdui
Constant κ0 0.44 0.15?

Ability Interaction κθ -8.3? 0.014?

Female Dummy κfem -0.083? 0.00075?

Parental Education κParEd -1.7? 0.0049?

Parental Utility from Transfers:

F
(
trH , trE ,Ωi

)
= ωEV

(
Ωi|trH , trE

)
︸ ︷︷ ︸

Altruism

+E

(ξ0 + ξParEdParEdui)1E︸ ︷︷ ︸
Paternalism

+φ
(cb + tre)

1−γ

1− γ︸ ︷︷ ︸
Warm Glow


Altruiusm ω 3.0 0.021
Prestige Constant ξ0 0.27 0.0017
Parent's Education Interaction ξParEd 0.69? 0.00024?

Warm Glow Strength φ 0.09 0.0016
Warm Glow Level cb -3.4 ?? 0.059??

? we display 10,000 times the parameter value.
?? we display the parameter value divided by 10,000.

which identi�es γ. σ is therefore identi�ed by 22. Finally, we must normalize one of the

κj = 0. Then all of the κj terms are identi�ed by 21.

B.8 ML Estimates

The parameter estimates are contained in Table 5.

B.9 Graduation Rates and Enrollment by Gender

Figure 11 shows the college graduation rates as a function of parental income and ability in

the model and in the data. The model is able to replicate these moments well.

Figure 12(a) shows the college enrollment rates for male and female students as a function

of parental income in the model and in the data. Figure 12(b) shows the college enrollment

rates for male and female students as a function of ability in the model and in the data. We

can see that the model is able to replicate these moments quite well.
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(a) Graduation Rates and Parental Income (b) Graduation Rates and AFQT

Figure 11: Graduation and Enrollment Rates

Notes: The solid (red) line shows simulated enrollment shares by parental income and AFQT

percentile. This is compared to the dashed (black) line which shows the shares in the data.

B.10 Earnings Pro�les Model

Figure 13 shows the simulated average for college graduates and high school graduates as a

function of age.

B.11 Untargeted Moments

Responsiveness of Enrollment to Grant Increases. Many papers have analyzed the

impact of increases in grants or decreases in tuition on college enrollment. Deming and

Dynarski (2009) survey the literature. The estimated impact of a $1,000 increase in yearly

grants (or a respective reduction in tuition) on enrollment ranges from 1 to 6 percentage points,

depending on the policy reform and research design. A more recent study by Castleman

and Long (2016) looks at the impact of grants targeted to low-income children. Applying a

regression-discontinuity design for need-based �nancial aid in Florida (Florida Student Access

Grant), they �nd that a $1,000 increase in yearly grants for children with parental income

around $30,000 increases enrollment by 2.5 percentage points.

Simulating a $1,000 increase in �nancial aid for all individuals in our model leads to a 1.69

percentage point increase in overall enrollment rates and a 2.06 percentage point increase for

students near the studied discontinuity in Castleman and Long (2016). Overall, our simulated

elasticities are fairly consistent with these reduced-form estimates. This gives us con�dence

in our maximum likelihood estimates, especially given that these reduced form estimates were

not targeted in estimation.

Importance of Parental Income. A well-known empirical fact is that individuals with

higher parental income are more likely to receive a college degree (see also Figure 2). However,
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(a) Enrollment Rates and Parental Income (b) Enrollment Rates and AFQT

Figure 12: Graduation and Enrollment Rates by Gender

Notes: The panel on the left shows the relationship between enrollment rates and parental income

in the model and in the data for females and males. The panel on the right shows the relationship

between enrollment rates and ability in the model and in the data for females and males.

Figure 13: College and High School Graduate Earnings Pro�les.

it is not obvious whether this is primarily driven by parental income itself or by variables

correlated with parental income and college graduation. Using income tax data and a research

design exploiting parental layo�s, Hilger (2016) �nds that a $1,000 increase in parental income

leads to an increase in college enrollment of 0.43 percentage points. To test our model, we

increased parental income for each individual by $1,000 and obtained increases in college

enrollment by 0.18 percentage points. Our model predicts a moderate direct e�ect of parental

income, smaller but in line with Hilger (2016).

Returns for Marginal Students. We �nd a return to one year of schooling of 12.1% for

marginal students. This re�ects that marginal students are of lower ability on average than

inframarginal students and is also in line with Oreopoulos and Petronijevic (2013). A clean way

to infer returns for marginal students is found in Zimmerman (2014). In his study, students

are marginal with respect to academic ability, measured by a GPA admission cuto�. He �nds
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that these students have earnings 22% higher than those just below the cuto�, when earnings

are measured 8 to 14 years after high school graduation. We perform a similar simulation and

make use of the fact that the NLSY also provides GPA data. In fact, our model gives a return

to college of 26.3%, measured 8 to 14 years after high school graduation, for students with a

GPA in this neighborhood.59

C Additional Results

C.1 Marginal and Inframarginals Evaluated at Current Financial

Aid Levels

In Section 6.1, we plotted the share of marginal enrollees and inframarginal enrollees at a �at

�nancial schedule for a number of model speci�cations. In this section, we repeat this exercise

but plot the share of marginal enrollees and inframarginal enrollees at the current �nancial

aid schedule.

The results are very similar to those presented in Section 6.1. The relationship between

parental income and share of inframarginal students has become weaker (and eventually be-

comes negative), re�ecting that the current �nancial aid schedule is decreasing in parental

income, see Figure 14(a). Further, children with high income parents are more likely to be

marginal with respect to �nancial aid relative to graph is in Section 6.1, again re�ecting that

they receive less �nancial aid then children with low income parents, see Figure 14(b).

C.2 An Alternative Decomposition

In Section 6.1, we perform a model-based decomposition exercise to better understand which

drive the optimal progressivity result. In this appendix, we perform a similar decomposition

but alter the order in which we change various components to the model. In particular, we �rst

remove the relationship between parental income and parental transfers, before proceeding to

remove the relation between parental income and ability and the relation between parental

education and the psychic costs of college. As before, all changes to the model speci�cation

are cumulative.

We �rst analyze the determinants of the positive relation between college enrollment and

parental income in Figure 15(a) and the negative relationship between share of marginal stu-

dents and parental income in Figure 15(a). The simulated relationships at a �at �nancial aid

59Finally, we do not account for di�ering rates of unemployment and disability insurance rates. Both
numbers are typically found to be only half as large for college graduates (see Oreopoulos and Petronijevic
(2013) for unemployment and Laun and Wallenius (2016) for disability insurance). Further, the �scal costs
of Medicare are likely to be much lower for individuals with a college degree. Lastly, we assume that all
individuals work until 65 not taking into account that college graduates on average work longer (Laun and
Wallenius, 2016). These facts would generally strengthen the case for an increase in college subsidies.
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(a) Inframarginal Enrollees (b) Marginal Students

Figure 14: Model-Based Decomposition for Marginal and Inframarginal Students at Current
Grant Schedule

Notes: We plot the share of college enrollees and marginal college enrollees given the current US aid

schedule for di�erent model speci�cations. The solid red line represent the baseline model. For the

dashed black line we simulate a model version for which we remove the correlation between ability

and parental income. For the dashed-dotted blue line we simulate a model version for which we

additionally remove the correlation between the psychic costs and parental education. For the

dotted pink line we simulate a model version for which additionally removes labor market riskiness;

i.e. education decisions are made with no uncertainty about future wages. For the turquoise line

with crosses we simulate a model version for which we set parental transfers to the mean parental

transfers in the data, conditional on education.

schedule are shown in the solid lines in the two �gures. In this baseline case, college enroll-

ment rates are strongly increasing in parental income while the share of marginal students are

strongly decreasing in parental income. Next, in the turquoise lines, we set parental transfers

exogenously to the mean levels for enrollees and non-enrollees and assume no families are

eligible for subsidized Sta�ord loans. From Figure 15(a) we can see that the positive rela-

tion between college enrollment and parental income weakens slightly. The relation between

parental income and share of marginal enrollees, however, �attens completely. The black

dotted line and the blue dash-dotted line show the cases in which we remove the correlation

between parental income and ability and in which we remove the relation between parental

education and psychic costs, respectively. After removing these two factors there is no inter-

esting heterogeneity between parental income groups. Removing these two relationships both

weak the relationship between parental income and enrollment. In both these simulations, the

gradient between parental income and share of marginal students remains �at.

We now simulate the respective optimal �nancial aid schedule under each model speci�ca-

tion in Figure 16. When we remove the relationship between parental income and parental

transfers (the turquoise line in Figure 16), the optimal �nancial aid schedule �attens. This

�attening of the optimal schedule occurs because the relationship between parental income
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(a) Inframarginal Graduates (b) Marginal Students

Figure 15: Alternative Model-Based Decomposition for Marginal and Inframarginal Students
at Flat Grant Schedule

Notes: We plot the share of college enrollees and marginal college enrollees given a �at �nancial aid

schedule for di�erent model speci�cations. The solid red line represent the full model. For the

turquoise line with crosses we simulate a model version for which set parental transfers to the mean

parental transfers in the data, conditional on education. For the dashed black line we simulate a

model version for which we remove the correlation between ability and parental income. For the

dashed-dotted blue line we simulate a model version for which we additionally remove the

correlation between the psychic costs and parental education.

and share of marginal enrollees is �at. However, there optimal aid is still positive�ranging

from above $6,500 for the poorest families to below $4,500 for the wealtheat families. The

optimal aid schedule is progressive because high income children are still much more likely in-

framarginal. When we remove the positive ability-income correlation (the black dashed line)

and the relationship between parental education and psychic costs we �atten the relation-

ship between parental income and share of inframarginal students. The optimal aid schedule

�attens as a result.

C.3 Decomposition with Removal of Borrowing Constraints

In Figures 17(a) and 17(b), we perform the same decomposition we performed in Section

6.1 but additionally remove borrowing constraints before equalizing parental transfers. We

additionally assume that no families are eligible for subsidized Sta�ord loans throughout

the decomposition. Figure 18 shows the resulting optimal �nancial aid under each model

speci�cation.

As before, the red line shows the baseline case, the black dotted line shows the case where

we remove the ability correlation, the blue dash-dotted line shows the case where we remove

the correlation between psychic cost of parental education, and the dotted pink line show

the case with no labor market uncertainty. These lines tell essentially the same story as the

decomposition in Section 6.1.
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Figure 16: Optimal Financial Aid for Di�erent Model Speci�cations

Notes: For each model speci�cation (see Figure 15), we illustrate the respective optimal �nancial

aid schedule.

The green dotted lines show the case in which we remove borrowing constraints. As a

result, the number of inframarginal students increases for all income groups, as student no

longer have to deal with borrowing constraints in college. Additionally, the share of marginal

enrollees drops substantially for all parental income groups. As students are no longer a�ected

by borrowing constraints in college, the marginal bene�t of additional �nancial aid decreases

substantially.

However, despite the fact that both the gradients of marginal and inframarginal enrollees

are �at, the optimal aid is still slightly decreasing in parental income. This is because, once

the correlations of parental income with marginal and inframarginal students have been shut

down, the di�erences in marginal social welfare weights play a role. We �nd that at the �at

�nancial aid schedule, the marginal social welfare weight of the poorest children is roughly 20%

higher than that of the richest students. Essentially, given that enrollment is so unresponsive

to �nancial aid, the social planner allocates �nancial aid to agents with the highest marginal

social welfare weights. This leads to a slightly progressive �nancial aid schedule.

Equalizing parental transfers on top of this removes these di�erences in marginal social

welfare weights and therefore leads to an �at optimal aid schedule.

C.4 The Role of Borrowing Constraints

Figure 19(a) shows the optimal �nancial aid policies when we have abolished borrowing con-

straints. We �rst remove borrowing constraints and keep the current �nancial aid system.

This will increase college enrollment and imply a windfall �scal gain for the government. In

a second step, we choose optimal �nancial aid but restrict the government to not use this

windfall gain. Figure 19(b), shows the implied graduate patterns.
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(a) Inframarginal Graduates (b) Marginal Students

Figure 17: Model-Based Decomposition for Marginal and Inframarginal Students at Flat Grant
Schedule with Removal of Borrowing Constraints

Notes: We plot the share of college enrollees and marginal college enrollees given a �at �nancial aid

schedule for di�erent model speci�cations. We assume no subsidized Sta�ord loans for all

speci�cations. The solid red line represent the full model at the �at �nancial aid schedule. For the

dashed black line we simulate a model version for which we remove the correlation between ability

and parental income. For the dashed-dotted blue line we simulate a model version for which we

additionally remove the correlation between the psychic costs and parental education. For the

dotted pink line we simulate a model version for which on top removes any riskiness; i.e. education

decisions are made under perfect foresight. For the dashed green line with circles we simulate a

model version for which on top we remove all borrowing constraints. For the turquoise line with

crosses we simulate a model version for which set parental transfers to the mean parental transfers

in the data, conditional on education.

C.5 Varying Borrowing Constraints

To get a sense of how varying borrowing constraints would a�ect our main conclusions, we

have re-estimated a version of the model in which the borrowing limit depends on parental

resources. Here, it was very hard for us to get guidance on what would be a reasonable way

to have exogenous borrowing constraints depend on parental income and ability of the child.

Hence, we have decided to report a very simple and transparent case in the paper: we assume

that children whose both parents have a college degree can borrow twice the amount of the

Sta�ord loan limit. Admittedly, this is ad-hoc in two ways. The �rst ad-hoc decision is to

separate children along the parental education dimension. Our motivation was that parental

education strongly correlates with both parental earnings and child's ability. The second ad-

hoc decision we faced was: how much more can these children with highly educated parents

borrow? We here decided to just double the amount in the case that we report.

The optimal utilitarian �nancial aid with parental education dependent borrowing con-

straints are shown in Figure 20. The shape is slightly di�erent from the baseline optimal
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Figure 18: Optimal Financial Aid for Di�erent Model Speci�cations

Notes: For each model speci�cation (see Figure 17), we illustrate the respective optimal �nancial

aid schedule.

schedule, as changes in the borrowing constraints lead to changes share of marginal students.60

However, the optimal �nancial aid is still highly progressive.

C.6 Details: Endogenous Ability

We assume that initial ability θ0 is distributed as:

ln θ0 = β0 + β1 ln I + u

where u is normally distributed. We choose β0, β1, and the variance of u to match the mean

and variance of log childhood ability and covariance of log childhood ability and log parental

income from Agostinelli and Wiswall (2016).

We need to calibrate the parameters of the childhood ability production function:

1. A- TFP of parental production function.

2. γ1 - weight on initial ability

3. γ2 - weight on parental investment

4. γ3 - interaction term

5. σι - variance of ι.

60As we have shown earlier, relaxing borrowing constraints for all students reduces the progressivity of the
optimal aid schedule. That force is still present here, as some low income students have two college educated
parents. However, this force is partially muted by the fact that parental education is increasing in parental
income. As such, the optimal aid schedule here is more progressive than the case with relaxed borrowing con-
straints for all individuals, but slightly less progressive than the baseline case with equal borrowing constraints
for all students.
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(a) Financial Aid (b) Graduation Rates

Figure 19: Financial Aid and Graduation with Free Borrowing

Notes: The dashed-dotted (blue) line shows the optimal schedule with no borrowing constraints.

Optimal �nancial aid with a Utilitarian welfare function and with borrowing constraints and current

�nancial aid are also shown for comparison in Panel (a). In Panel (b) we display the college

graduation share by parental income group for each of the three scenarios.

Agostinelli and Wiswall (2016) estimate a translog production function of the following

form:

ln θt+1 = lnAt + γ1t ln θt + γ2t ln It + γ3t ln θt · ln It + ηθ,t

for t = 0, 1, 2, 3. By combining these four equations, we can derive a single equation for end of

childhood ability ln θ4 as a function of initial ability ln θ0, parental investment in each period

ln It, the yearly shocks ηθ,t, and the technology parameters.

Speci�cally, after some algebra we can write

ln θ4 = ln θ0 (γ30 ln I0 + γ10) (γ13 + γ33 ln I1) (γ12 + γ32 ln I2) (γ11 + γ31 ln I1) + f(I, A, γ)

where f(I, A, γ) is a function that depends on investment and the other parameters but

not directly on initial ability ln θ0.

We can further rearrange this equation to yield

ln θ4 = γ̃ ln θ0 + g (θ0, I0, I1, I2, I3) + f(I, A, γ)

where

γ̃ = γ10γ11γ12γ13

and

g (θ0, I0, I1, I2, I3) = ln θ0 (γ30 ln I0 + γ10) (γ13 + γ33 ln I1) (γ12 + γ32 ln I2) (γ11 + γ31 ln I1)−γ̃ ln θ0
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Figure 20: Optimal Financial Aid with Parental Education Dependent Borrowing Constraints

Notes: The dashed-dotted (blue) line shows the optimal schedule with parental income dependent

borrowing constraints. Optimal �nancial aid with in the baseline case and current �nancial aid are

also shown for comparison in Panel (a). In Panel (b) we display the college graduation share by

parental income group for each of the three scenarios.

We set γ1 equal to the product of the coe�cients on lagged ability from Agostinelli and

Wiswall (2016) γ1,1γ1,2γ1,3γ1,4 ≈ 2. This approximation will be true if the terms on the interac-

tion terms in Agostinelli and Wiswall (2016) are close to zero. Agostinelli and Wiswall (2016)

estimate γ30 = −0.105(0.066), γ31 = −0.005(0.019), γ32 = −0.003(0.013), γ33 = 0.003(0.010).

None of the estimates are statistically di�erent from 0 at 95% con�dence level and only the �rst

one at a 90% con�dence level. Therefore, we think calibrating γ1 = 2 seems like a reasonable

choice.

Then we have four parameters, A, γ2, σ
ι, and γ3. We choose these parameters to match

the four following moments:

1. Mean of θ

2. Variance of θ

3. Covariance of θ and parental income I.

4. From Agostinelli and Wiswall (2016): The e�ect on realized years of schooling of a

monetary transfer to parents is roughly ten times larger for parents in the 10th percentile

of the income distribution compared to those in the 90th percentile.

Loosely speaking, the covariance of θ and I helps to pin down the importance of parental

monetary investments γ2. The variance of θ helps to pin down the variance to shock of ability

production, σι. The di�erential e�ect of monetary transfers for rich and poor parents helps

to pin down the interaction between parental investment and initial ability, γ3. Finally, the

average ability level helps to discipline the TFP of the production function, γ1.

Finally, we need to translate these measures of �nal ability, which are in the units used in

Agostinelli and Wiswall (2016) into our measure of ability, which is based on AFQT scores.
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Let θ̂ represent end of childhood ability as measured in the units used in Agostinelli and

Wiswall (2016). We assume that our measures of ability θ is a linear projection of this log

skill measure

θ = α0 + α1 ln θ̂

where we choose α1 and α0 to match the mean and variance of our AFQT measure. Therefore,

when we simulate the model, we �rst simulate childhood ability in the units used in Agostinelli

and Wiswall (2016). Then we translate the measures of ability in Agostinelli and Wiswall

(2016) to the ability measures we use in this paper.

Changes in Childhood Ability Figure 21 shows the change in the relationship between

parental income and ability as a result of switching from the current �nancial aid system

to the optimal system with endogenous ability. Ability is measured in percentiles of AFQT

scores where percentiles are evaluated at their current levels. We can see that switching to

the optimal aid schedule leads to substantial increases in child ability, especially for children

in the lower end of the parental income distribution.

Figure 21: Ability Levels with Endogenous Ability
Notes: This �gure shows the relationship between parental income and ability in the optimal system

with endogenous ability and under the current �nancial aid system. Ability is measured in percentiles

of the AFQT distribution before �nancial aid is re-optimized.

C.7 Endogenous Ability with Parental Borrowing Constraints

One issue with the preceding analysis is that we have assumed that parents do not face

borrowing constraints. Poor parents may be borrowing constrained while their children are

young and therefore may not be able to increase investment in their children in response to

changes in �nancial aid. To explore how borrowing constraints would a�ect the optimal policy,

we assume that P% of parents without a college education cannot increase their investment in

their children while the remainder of parents may choose their investment level without this
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constraint.61 The optimal policy for a range of values of P is displayed in Figure 22. We can

see that the optimal progressivity of the system decreases as we increase the percentage of

low-education families who are borrowing constrained. However, the optimal schedule remains

more progressive than the current schedule in all cases.

(a) Financial Aid (b) Graduation Rates

(c) Ability Levels

Figure 22: Financial Aid, Graduation and Ability Levels with Endogenous Ability and
Parental Borrowing Constraints
Notes: In Panel (a), each line shows the optimal �nancial aid with endogenous ability when P percent

of low-education parents are borrowing constrained and therefore cannot adjust their child's ability in

response to changes in �nancial aid. In Panel (b) we display the college graduation share for each of

these scenarios. Panel (c) shows the relationship between parental income and ability in each scenario.

Ability is measured in percentiles of the AFQT distribution before �nancial aid is re-optimized.

C.8 General Equilibrium E�ects on Wages

Our analysis abstracted from general equilibrium e�ects on relative wages. Accounting for

these e�ects would imply that the e�ects of �nancial aid on enrollment might be mitigated in

61Caucutt and Lochner (2017) �nd that 20% of parents with a high school degree and young children are
borrowing constrained. Of course, borrowing constraints will also a�ect the investment decisions of parents
who are not at the borrowing limit.

72



the long run: if more individuals go to college, the college wage premium should be expected

to decrease because of an increase in the supply of college educated labor (Katz and Murphy,

1992). This in turn would mitigate the initial enrollment increase. To investigate the role

of general equilibrium e�ects on our results, we recalculate the optimal �nancial aid schedule

under the assumption that wages are determined in equilibrium. We assume �rms use a

CES production function that combines total e�ciency units of labor supplied by skilled and

unskilled workers, implying that wages are determined by the ratio of skilled to unskilled

labor. We assume an elasticity of substitution between skilled and unskilled workers of 2.

We assume identical perfectly competitive �rms use CES production functions which com-

bine skilled and unskilled labor. Therefore, wages are determined as a function of the ratio of

the total skilled labor to the total unskilled labor.

Let PU and P S denote the endogenously determined e�ciency wages for unskilled and

skilled workers, respectively, where skilled workers are those with a college degree and unskilled

workers are high school graduates. We allocate half of college dropouts to each of the skill

groups, as is common in the literature (e.g. Card and Lemieux (2001)). Suppose an agent's

wages can be written as the product of her e�ciency wage and her quantity of e�ciency units

of labor supplied: wit = P skHit, where sk ∈ {unskilled, skilled} denotes skill level and Hit

denotes agent i's level of human capital.62

We assume perfectly competitive labor markets. Production at the representative �rm is a

CES function combining skilled and unskilled labor:

Y = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)σ/(σ−1)

where A is total factor productivity, λ is the factor intensity of skilled labor, and σ is the

elasticity of substitution between skilled and unskilled labor. We assume σ = 2. S and U

represent the total amount of human capital units supplied by skilled and unskilled workers.

We assume the economy is in a long run steady-state equilibrium, and that the economy

consists of identical overlapping cohorts. Therefore, as cohorts are identical, the total labor

supply in the steady-state equilibrium is equal to the total amount of labor supplied over the

life-cycle for a given cohort.

Therefore, we can write:

S =
∑
i

∑
t

Hit`itI (ski = skilled)

and

62We normalize units of human capital such that Hit = 1 is an e�ciency unit of labor is de�ned as the
labor supplied by a male worker whose log wages at age 18 are equal to the constant of the wage equation.
Therefore, the constants of the wage functions for skilled and unskilled workers are equal to the logs of the
e�ciency wages for skilled and unskilled workers.

73



U =
∑
i

∑
t

Hit`itI (ski = unskilled)

.

E�ciency wages are given by the �rst order conditions of the �rm's pro�t maximization

problem:

P S = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)1/(σ−1)
λS−1/σ

and

PU = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)1/(σ−1)
(1− λ)U−1/σ.

These two functions determine wages endogenously as functions of labor supply.

The optimal �nancial aid schedule and graduation rates with general equilibrium wages are

shown in Figures 23(a) and 23(b). We can see that the overall amount of aid has decreased

slightly as the �scal externality of college has been scaled down by general equilibrium wage ef-

fects. However, the optimal aid schedule with endogenous wages is just as progressive as in the

case with exogenous wages. Thus, while general equilibrium wages dampen the e�ectiveness

of �nancial aid overall, they do not lead to dramatic changes in the relative bene�t of �nan-

cial aid increases for students of di�erent parental income levels. Hence, whereas the overall

(average) generosity of the optimal �nancial aid schedule is slightly lower, the implications for

how �nancial aid should vary with parental income are unchanged.63

C.9 Jointly Optimal Financial Aid and

Income Taxation

The size of the �scal externality of college education depends on the tax and transfer system

in place. Our structural estimates took the current US tax system as given. An interesting

question to ask is how optimal subsidies change when the tax schedule is chosen optimally.

To address this, we enrich the optimal policy space such that the planner can also pick a

nonlinear tax function T (y) as is standard in the public �nance literature (Piketty and Saez,

2013).64

First, the optimal formulas for the subsidy schedule are unchanged and still given by the

formulas in Section 2. In Appendix A.6, we show what the endogenous extensive education

63Our results are, hence, consistent with the important earlier paper(s) by Heckman et al. (1998). They
�nd that GE e�ects dampen the e�ectiveness of tuition subsidies, and in our case the average level of �nancial
aid is also a�ected.

64We abstract from education dependent taxation; for such cases please see Findeisen and Sachs (2016) and
Stantcheva (2017).
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(a) Financial Aid (b) Graduation Rates

Figure 23: Financial Aid and Graduation with General Equilibrium Wages
Notes: The dashed-dotted (blue) line shows the optimal schedule when wages are determined in

equilibrium. Production is CES between skilled and unskilled workers with an elasticity of substitution

of 2. Optimal �nancial aid with exogenous wage rates and current �nancial aid are also shown for

comparison in Panel (a). In Panel (b) we display the college graduation share by parental income

group for each of the three scenarios.

margin implies for optimal marginal tax rates.65 For the sake of brevity, we discuss the

theory only in the Appendix and now move on to the quantitative implications of optimal

taxes. We assume that agents are borrowing constrained and the government only (besides

the tax schedule) maximizes the need-based element of the �nancial aid schedule. Results are

barely changed if borrowing constraints are relaxed and/or the merit-based element is chosen

optimally as well.

Figure 24(a) displays optimal average tax rates in the optimal as well as in the current US

system. Average tax rates are higher for most part of the income distribution. As Figure 24(b)

shows, this is driven by higher marginal tax rates throughout but especially at the bottom of

the distribution, a familiar result from the literature (Diamond and Saez, 2011). In unreported

results, we �nd that the direct e�ect of taxes on enrollment decisions, which we discussed in

Section 3, is very small. In particular, it does not overturn the optimal U-shaped pattern of

optimal tax rates nor does it in�uence the optimal top tax rate which is still mainly determined

by the interaction of the labor supply elasticity and the Pareto parameter of the income

distribution (Saez, 2001).

Figure 25(a) illustrates optimal �nancial aid in the presence of the optimal tax schedule.

First, notice that �nancial aid is signi�cantly higher on average compared to the case with the

current US tax code. Higher income tax rates increase the �scal externality, which increases the

optimal level of the college subsidy (i.e. �nancial aid). Second, strikingly, the progressivity of

65The formula is therefore related to the formulas of Saez (2002) and Jacquet et al. (2013), where the
extensive margin is due to labor market participation, or Lehmann et al. (2014) where the extensive margin
captures migration.
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(a) Average Tax Rates (b) Marginal Tax Rates

Figure 24: Optimal versus Current: Average and Marginal Tax Rates

(a) Financial Aid (b) Graduation Rates

Figure 25: Financial Aid and Graduation with Optimal Tax Schedule

Notes: The dashed-dotted (blue) line shows the optimal schedule when the tax schedule is also

chosen optimally. Optimal �nancial aid with the current tax schedule and current �nancial aid are

also shown for comparison in Panel (a). In Panel (b) we display the college graduation share by

parental income group for each of the three scenarios.

optimal �nancial aid policies is preserved. Progressive taxation does not change the desirability

of progressive �nancial aid policies.

C.10 Merit-Based Financial Aid

Up to now, we have assumed that the merit-based element of �nancial aid policies stays

una�ected. We now allow the government to optimally choose the gradient in merit and

parental income. Figure 26(a) shows that � if optimally targeted also in terms of merit �

�nancial aid policies can be more generous. The progressive nature however is even slightly

reinforced.
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(a) Financial Aid (b) Illustration of Optimal Merit Based Element

Figure 26: Optimal Need and Merit Based Financial Aid

Notes: The dashed-dotted (blue) line shows the optimal �nancial aid for students with median

ability as a function of income when the merit-based component of �nancial aid is also chosen

optimally. Optimal �nancial aid with exogenous wage rates and current �nancial aid are also shown

for comparison in Panel (a). In Panel (b) the merit based component of the optimal aid schedule.

Figure 26(b) shows how optimal �nancial aid is increasing in AFQT. Interestingly, the slope

is almost independent of parental income.
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