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1 Proofs and Background for Section 2 of Main Text

1.1 Derivation of Equation 3

. The Lagrangian for the government's problem reads as:

L =

∫
R+

∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI

+ ρ

{∫
R+

∫
χ

NT HNPV (X, I)1V Ej <V Hj k(X, I)dXdI

+

∫
R+

∫
χ

NT GNPV (X, I)1V Ej ≥V Hj P
C(X, I,G(I))k(X, I)dXdI

+

∫
R+

∫
χ

NT DNPV (X, I)1V Ej ≥V Hj

(
1− PC(X, I,G(I))

)
k(X, I)dXdI − F̄

}
.

The derivative w.r.t. G(I) is given by:

∂L
∂G(I)

=

∫
χ

1V Ej ≥V Hj
∂V E(X, I)

∂G(I)
h̃(X|I)dX (1)

+ ρ

∫
χ

{
PC(X, I,G(I))

∂NT GNPV (X, I)

∂G(I)
+
(
1− PC(X, I,G(I))

) ∂NT DNPV (X, I)

∂G(I)

}
h(X|I)dX

+ ρ

∫
χ

1Hj→Ej

{
PC(X, I,G(I))NT GNPV (X, I) +

(
1− PC(X, I,G(I))

)
NT DNPV (X, I)

−NT HNPV (X, I)
}
h(X|I)dX

+ ρ

∫
χ

∂PC(X, I,G(I))

∂G(I)

(
NT GNPV (X, I)−NT DNPV (X, I)

)
h(X|I)dX

Recall that 1Hj→Ej takes the value one if an individual of type j is pushed over the college

enrollment margin due to a small increase in �nancial aid.

The �rst term captures the direct utility increase of inframarginal enrollees due to receiving

more �nancial aid. The second term captures the direct �scal e�ect of paying more �nancial aid

to inframarginal students. The third term captures the �scal e�ect of additional enrollees. The

fourth e�ect captures the �scal e�ect due to the increase in the completion rate of inframarginal

students. The implied change in the enrollment and dropout rate has no direct �rst-order e�ect on

welfare: individuals that are marginal in their decision to enroll or not and to continue studying or

drop out, were just indi�erent between the two respective options, hence this change in behavior

has no e�ect on their utility.

The de�nitions of E(I) and ∆TE(I) directly imply that the third term equals the enrollment

e�ect multiplied by ρ. The de�nitions of ∆T C(I), E(I) and C(I) directly imply that the fourth

term equals the completion e�ect multiplied by ρ.
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Now it remains to be shown that the �rst and second term are equal to the mechanical e�ect.

The application of the envelope theorem implies that the �rst term reads as

∫
χ

1V Ej ≥V Hj E

tmaxg∑
t=1

βt−1UE
c (·)

(
1 +

∂trEt (·)
∂G(I)

) t∏
s=1

(1V NDs ≥V Ds )
t−1∏
s=1

(
1− PrGrads (X)

) h̃(X|I)dXẼ(I).

(2)

The second term, using the de�nitions of NT GNPV (X, I) and NT DNPV (X, I), can be written as

−ρ
∫
χ

tmaxg∑
t=1

1

1 + r

t∏
s=1

PE
t (X, I,G(I))h(X|I)dX. (3)

Adding (2) and (3), using the de�nition of the social marginal welfare weight yields equation 3

form the main text.

1.2 More General Version of Equation 3 with Annual Dropout Deci-

sions

We now show the generalization in which individuals can drop out each period. For this case,

we have to distinguish between individuals that drop out in di�erent periods. Hence, for the

education decision we have: e ∈ {H,G,D1, D2, ..., Dtmaxg
}, where Dt implies that individuals

drop out at the beginning of year t. Accordingly we can de�ne the net �scal contribution of an

individual of type (X, I) that drops out in period t by NT DtNPV (X, I):

NT DtNPV (X, I) =
T∑
s=t

(
1

1 + r

)s−1

E (T (ys)|X, I,Dt)− G(I)
t−1∑
s=1

(
1

1 + r

)s−1

.

We also have to de�ne the net �scal contribution of an individual that is enrolled in year tmaxg

NT Et
max
g

NPV (X, I) = Ptmaxg
(X, I,G(I))NT GNPV (X, I) +

(
1− Ptmaxg

(X, I,G(I))
)
NT Dt

max
g

NPV (X, I)

and for t = 2, 3, ..., tmaxg − 1:

NT EtNPV (X, I) = Pt(X, I,G(I))NT Et+1
NPV (X, I) + (1− Pt(X, I,G(I)))NT DtNPV (X, I).
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The Lagrangian for the government's problem reads as:

L =

∫
R+

∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dXdI

+ ρ

{∫
R+

∫
χ

NT HNPV (X, I)1V Ej <V Hj k(X, I)dXdI

+

∫
R+

∫
χ

NT GNPV (X, I)1V Ej ≥V Hj P
C(X, I,G(I))k(X, I)dXdI

+

tmaxg∑
τ=1

[∫
R+

∫
χ

NT DτNPV (X, I)1V Ej ≥V Hj

τ−1∏
t=1

Pt(X, I,G(I)) (1− Pτ (X, I,G(I))) k(X, I)dXdI

]
− F̄

}
.

The FOC for G(I) shares the same basic structure as (1). However, here the �scal e�ects due to

change in dropout behavior are more involved:1

ρ

∫
χ

tmaxg −1∏
t=1

Pt(X, I,G(I))
∂Ptmaxg

(X, I,G(I))

∂G(I)

(
NT GNPV (X, I)−NT Dt

max
g

NPV (X, I)
)
h(X|I)dX

+ρ

tmaxg −1∑
τ=1

[∫
χ

τ−1∏
t=1

Pt(X, I,G(I))
∂Pτ (X, I,G(I))

∂G(I)

(
NT Eτ+1

NPV (X, I)−NT DτNPV (X, I)
)
h(X|I)dX

]
,

where we let P0(X, I,G(I)) = 1.

In shorter notation, similar to that from before, we can write

tmaxg∑
t=1

∂Cont(I)

∂G(I)

∣∣∣∣∣
Et(I)

∆T Con,t(I)Et(I)

where Cont(I) is the share of those enrollees with parental income I in period t, that continue

studying to year t+ 1. It is de�ned by

Cont(I) =
Et+1(I)

Et(I)

for t = 1, 2, .., tmaxg − 1 and

Contmaxg
(I) =

∫
χ
1V Ej ≥V Hj

∏tmaxg

s=1 Ps(X, I,G(I))h(X|I)dX

Etmaxg
(I)

.

where

E1(I) = E(I) =

∫
χ

1V Ej ≥V Hj h(X|I)dX.

1Again, changes in dropout behaviour have no direct welfare e�ect due to the envelope theorem.
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and

Et(I) =

∫
χ

1V Ej ≥V Hj

t−1∏
s=1

Ps(X, I,G(I))h(X|I)dX.

Finally, the changes in tax revenue are de�ned by:

∆T Con,t(I) =

∫
χ

∆T Con,t(X, I)∂P (X,I,G(I))
∂G(I)

h(X|I)dX∫
χ
∂P (X,I,G(I))

∂G(I)
h(X|I)dX

where

∆T Con,t(X, I) = NT EtNPV (X, I)−NT DtNPV (X, I).

Hence, the equivalent to equation 3 is given by:

∂E(I)

∂G(I)
×∆T E(I) +

tmaxg∑
t=1

Et(I)
∂Cont(I)

∂G(I)

∣∣∣∣∣
Et(I)

∆T Con,t(I)− Ẽ(I)
(
1−WE(I)

)
.

1.3 Optimal Financial Aid in the Structural Model

In this section we return to the the optimality condition for �nancial aid, and highlight which

structural parameters are key for the relationship between optimal �nancial aid and parental

income in our quantitative model. For brevity and clarity, we focus on the share of marginal

and inframarginal enrollees because our numerical analysis below shows that these are the most

important forces for our progressivity result.

Inframarginal Enrollees: For brevity we focus on the share of inframarginal enrollees E (I)

instead of Ẽ(I).2 It is given by:

E (I) =

∫
X̃

exp
(
Ṽ E(X̃, I)/σE

)
exp

(
Ṽ E(X̃, I)/σE

)
+ exp

(
V H(X̃, I)/σE

)dH∗(X̃|I).

where H∗(X̃|I) is the CDF for X̃ conditional on I and where Ṽ E
(
X̃, I

)
= V E (X, I) − εE is

the value of enrolling in college minus the idiosyncratic taste for college εE3. This expression

immediately follows from the fact that the idiosyncratic enrollment bene�t εE is distributed

according to a type I extreme value distribution with scale parameter σE. The number of enrollees

2The insights would be identical if we were looking at Ẽ(I) here but notation would be unnecessarily cumber-
some.

3Note that V H(X̃, I) = V H(X, I), with some abuse of notation, because the idiosyncratic preference term εE

does not a�ect V H(X, I)
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conditional on
(
X̃, I

)
increases in the di�erence in the value functions of attending college or not.

How E (I) varies with parental income is largely determined by the relation of parental income

with (i) psychic costs κ, (ii) parental transfers, (iii) ability.

Marginal Enrollees: For a given (X̃, I), the share of marginal enrollees is given by

∂E(X̃, I)

∂G(I)
=
E(X̃, I)

(
1− E(X̃, I)

)
σE

∂V E(X̃, I)

∂G(I)
,

where E(X̃, I) is the enrollment share of individuals with observable characteristics X̃ and income

I,
E(X̃,I)(1−E(X̃,I))

σE
is the density of the enrollment bene�t parameter εE at the value where an

(X̃, I) individual is indi�erent between enrolling in college or not. Formally, this threshold is given

by ε̃E(X̃, I) = Ṽ E(X̃, I)−V H(X̃, I). Intuitively, the higher this density, the more individuals are

marginal in their decision and the stronger is the increase in enrollment due to higher �nancial

aid. A property of the logit distribution is that the density is maximized if enrollment is at 50%,

as is the case also for a normal distribution. Further, the lower the scale parameter σE, the higher

the share of marginal students ceteris paribus.

The share of marginal enrollees also depends on how much this threshold ε̃E(X̃, I) changes

due to an increase in �nancial aid, which is captured by:

∂V E(X̃, I)

∂G(I)
= E

tmaxg∑
t=1

βt−1ct(·)−γ
(

1 +
∂trEt (X̃, I,G(I))

∂G(I)

)
t∏

s=1

(1V NDs ≥V Ds )
t−1∏
s=1

(
1− PrGrads (X)

) .
Intuitively, agents with low marginal utility ct(·)−γ during college react more strongly �nancial

aid changes. According to this logic, children with low parental income should be more responsive

to increases in �nancial aid. How much this e�ect varies with parental income is governed by γ,

which we estimate with maximum likelihood. In addition, the stronger the crowding out of the

parental transfer (−∂trEt (X̃,I,G(I))

∂G(I)
), the less responsive are individuals ceteris paribus since less of

the �nancial aid increase reaches them.

2 Is Optimal Financial Aid Progressive? A Simple Model

2.1 Model

Simpli�ed Environment. We assume that preferences are linear in consumption and that

labor incomes are taxed linearly at rate τ , which is larger than 0 and smaller than one. We

consider a static problem. If individuals do not go to college, they earn income yH . If they go to

college, they pay tuition F and earn yH(1 + θ). Individuals are heterogeneous in ability/returns

to college, θ, and each θ > 0. There is no uncertainty. Further, individuals are heterogeneous
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in parental income I. If individuals go to college, they receive a parental transfer tr(I) with

tr′(I) > 0 and �nancial aid G(I).

Individual Problem. If an individual decides against college, utility is given by UH = (1 −
τ)yH . If an individual goes to college, utility is given by UC(θ, I) = (1− τ) yH (1 + θ) − (F −
G(I)− tr(I)). For each income level I, we can de�ne the ability of the marginal college graduate

θ̃(I), implicitly given by UH = UC(θ̃(I), I). All types (θ, I) with θ ≥ (<)θ̃(I) (do not) attend

college. Note that higher parental income here simply has the role of lowering the costs of college.

This implies that high-parental-income children are more likely to select into college. This channel

is reinforced if there is a positive association between I and θ.

Government Problem and Optimal Financial Aid for a Given I. The government uses

non-negative Pareto weights over the types as in the general model from the last section. Con-

sistent with the notation from last section, F (I) is the parental income distribution and H(θ|I)

the conditional distribution of ability. Appendix 2.2 shows that the following equation holds:

h(θ̃(I)|I)

yH(1− τ)︸ ︷︷ ︸
∂E(I)
∂G(I)

×
(
τyhθ̃(I)− G(I)

)
︸ ︷︷ ︸

∆T E(I)

−
(

1−H(θ̃(I)|I)
)

︸ ︷︷ ︸
Ẽ(I)

(1−WE(I)) = 0.

First note that there is no completion e�ect since we abstract from dropout. Second, the

�scal externality takes a simple form. Third the ratio of marginal over inframarginal students is

determined by the hazard rate of the conditional skill distribution. Rewriting leads to a rather

tractable expression for optimal �nancial aid G(I).

Proposition 1. The optimal �nancial aid schedule in the simpli�ed enviornment is given by

G(I) = τ (F − tr(I))− yH(1− τ)2

(
1−H(θ̃(I)|I)

)
h(θ̃(I)|I)

× (1−WE(I)), (4)

where θ̃(I) = F−tr(I)−G(I)
(1−τ)yH

. and τ (F − tr(I)) = τyH θ̃(I).

Proof. See Section 2.2 of this online appendix.

The �rst term in (4), τ (F − tr(I)), can be interpreted as a Pigouvian correction. Without

any distortions, i.e. G(I) = τ = 0, the marginal college enrollee would be characterized by

θ∗(I)yH = F − tr(I). (5)

Here the private returns and costs are equalized to the social ones. Such a condition is typically

called ��rst best�. When τ or G(I) 6= 0, the marginal enrollee still equates private returns to
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private costs, but there is a wedge between the social returns and costs now. Equating private

returns and costs yields:

θ̃(I)(1− τ)yH = F − tr(I)− G(I). (6)

Comparing (6) with (5) shows that the �scal externality ∆T E(I) = τyhθ̃(I) − G(I) can be seen

as a wedge. This is the classical �siamese twins� result of Bovenberg and Jacobs (2005): the sole

presence of taxes gives a rationale for subsidizing education and the size of the subsidy is increasing

in the size of the tax. Setting G(I) = τ (F − tr(I)) = τyHθ
∗(I) would imply θ̃(I) = θ∗(I) and

hence yield the �rst-best education level. Such a schedule would be optimal if there would be no

desire for redistribution (∂W
E(I)
∂I

= 0) and if the government budget constraint would be exactly

satis�ed for such a subsidy schedule (which would then imply WE(I) = 1 ∀ I). In the more likely
case where the government budget constraint is not ful�lled, then also the second terms shows

up that captures the transfers that are made to the inframarginal students.

The reason is that when choosing the optimal education subsidy G(I), the social planner has

to account for the fact that an increase in G(I) also has to be paid to those students that are

inframarginal in their decision.4 This is accounted for in the second part of (4). Since the decision

of inframarginal students is not altered, this is a pure transfer which is valued by WE(I) − 1

multiplied with the share of inframarginal students. This implies that if WE(I) > (<)1, the

planner would subsidize students of parental income up to a point where education is above

(below) the �rst best level as de�ned above.5 Further, this second term inversely proportional

to share of marginal students. Intuitively, the more marginal students can be incentivized, the

higher is the relative weight on the �rst term.

In the following we want to explore whether �nancial aid optimally decreases with parental

income. For this purpose, we shut down any redistributive case for �nancial aid and assume that
∂WE(I)
∂I

= 0. Two useful benchmark cases generate this: (i) a government that solely wants to

maximize tax revenue (implyingWE(I) = 0 for all I) and (ii) unweighted Utilitarinism (implying

WE(I) = constant < 1 for all I (if the �rst-best rule is not budget-feasible) as we elaborate in

Section 2.2 of this online appendix). If redistribution within college students is desired, i.e. with

declining weights WE ′(I) < 0, this would strengthen the case for progressivity and need-based

�nancial aid.

Is Optimal Financial Aid Decreasing in Parental Income? We proceed in two steps and

�rst state a result on the progressivity if parental income and child's ability are independently

distributed.

4If the planner can choose G(I, θ) in this simple model, she e�ectively has lump-sum taxes/transfers available
(for all college students). She only needs to correct the �scal externality in this case (the other considerations like
the ratio of marginal to inframarginals and redistribution within students can be perfectly dealt with by choosing
G(I, θ) for each type. This is not the case in the more general model presented in Section 2. We analyze the case
of jointly optimizing merit-based and need-based �nancial aid quantitatively in 6.7.

5This resembles the results of the optimal income tax literature with extensive margin labor supply responses
that negative participation taxes are optimal if the social welfare weight of low income workers is above one, see
e.g. Saez (2002).
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Corollary 1. Assume that ability θ and parental income I are independent, that is, H(θ|I) =

H(θ) ∀ θ, I. Further assume ∂WE(I)
∂I

= 0, i.e. there is no desire to redistribute from high to low

parental income students. Then the optimal �nancial aid schedule is progressive (i.e., G ′(I) <

0 ∀ I) if the distribution H(θ) is log concave.

Proof. See Section 2.3 of this online appendix.

The �rst term in (4) is decreasing in I. The higher parental income, the lower are the costs

of college F − tr(I) and hence, for a given rate of subsidization τ , the lower is the overall level of

the subsidy. Since θ̃′(I) < 0,6 the second term is decreasing in I if the inverse of the hazard rate

of H(θ) is decreasing. As Bagnoli and Bergstrom (2005) point out, log-concavity of a density

function is su�cient for an increasing hazard rate.7 Hence, in the illustrative case in which

parental income and child's ability are independent, we have an important benchmark, where the

selection mechanism through parental income in itself calls for progressive �nancial aid. Next we

turn to the empirically more appealing case in which parental income and ability are positively

associated.8

Corollary 2. Assume that ability θ and parental income I are positively associated in the sense

that for I ′ > I, the distribution H(θ|I ′) dominates H(θ|I) in the hazard rate order, that is,

∀θ, I, I ′ with I ′ > I :
h(θ|I)

1−H(θ|I)
≥ h(θ|I ′)

1−H(θ|I ′)
. (7)

Further assume ∂WE(I)
∂I

= 0, i.e. there is no desire to redistribute from high to low parental

income students. Then the optimal �nancial aid schedule is progressive (i.e. G ′(I) < 0 ∀ I) if the
conditional skill distributions H(θ|I) are log concave.

Proof. See Section 2.4 of this online appendix.

This condition (7) is stronger than �rst-order stochastic dominance (FOSD) but does imply

that the skill distribution of higher parental income levels �rst-order stochastically dominates the

skill distribution of lower parental income levels. FOSD of the skill distribution, however, does

not automatically imply (7).9 For the empirically plausible Pareto distribution, FOSD does imply

dominance in the hazard rate order. Consider, for example, the speci�cation h(θ|I) = α(I) θα(I)

θα(I)+1 ,

where α(I) is the thickness parameter. Here we have 1−H(θ|I)
h(θ|I) = θ

α(I)
and hence if α′(I) < 0, then

6Note that for this we need tr′(I) + G′(I) > 0, i.e. that �nancial aid is not too progressive. As our proof in
Appendix 2.3 shows, this is the case.

7Log-concavity of a probability distribution is a frequent condition used in many mechanism design or contract
theory applications, as this is "just enough special structure to yield a workable theory" (Bagnoli and Bergstrom,
2005).

8As Carneiro and Heckman (2003, p.27) write: "Family income and child ability are positively correlated,
so one would expect higher returns to schooling for children of high income families for this reason alone." In a
famous paper, Altonji and Dunn (1996) �nd higher returns to schooling for children with more-educated parents
than for children with less-educated parents.

9See, e.g., Shaked and Shanthikumar (2007, p.18).
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the tail of the skill distribution of high-parental-income children is thicker and the FOSD property

is ful�lled. Therefore, (7) is ful�lled.

The goal of this section was to show that under some rather weak assumptions, optimal

�nancial aid is indeed decreasing in income.

2.2 Proof of Proposition 1

The government's problem reads as

max
G(I)

∫
R+

∫ θ̃(I)

θ

U ((1− τ)yH) dH̃(θ|I)dF̃ (I)

+

∫
R+

∫ θ

θ̃(I)

U (((1− τyH) (1 + θ)− (F − G(I)− tr(I)))) dH̃(θ|I)dF̃ (I)

+ λ

[∫
R+

∫ θ̃(I)

θ

τyH dH(θ|I)dF (I) +

∫
R+

∫ θ

θ̃(I)

(τyH (1 + θ)− G(I)) dH(θ|I)dF (I)− F̄

]
,

where, as in Section 2, H̃ and F̃ denote the distributions of Pareto weights which integrate up to

one and F̄ is some exogenous revenue requirement. All Pareto weights are non-negative.

The �rst-order condition for G(I) is given by:

h(θ̃(I)|I)
∣∣∣ ∂θ̃(I)

∂G(I)

∣∣∣ (τyhθ̃(I)− G(I)
)
−
(

1−H(θ̃(I)|I)
)

(1−WE(I)) = 0, (8)

where WE(I) is average social marginal welfare weight for enrollees with parental income I and

formally given by:

WE(I) =

∫ θ
θ̃
U ′ (((1− τyH) (1 + θ)− (F − G(I)− tr(I)))) dH̃(θ|I)f̃(I)

λ(1−H(θ|I))f(θ)
.

Using
∂θ̃(I)

∂G(I)
= − 1

yH(1− τ)

and inserting into (8) gives the �rst-order condition explained in the main text just before Propo-

sition 1. Solving for G(I) gives Proposition 1.

Unweighted Utilitarianism with U(x)=x. If we assume h̃(θ|I) = h(θ|I) for all (θ, I) and

further assume U(x) = x, then, we obtain

WE(I) =
1

λ
∀ I,
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hence the welfare weights are the same for all parental income groups. The value for λ is measures

the marginal value of public funds and therefore depends on F̄ . To get an understanding of the

optimal value for λ, consider the perturbation around the optimum, where G(I) is increased by

δ → 0 for all I. This basically implies changing the lump sum component of G(I) and is equivalent

to just integrating over (8). The impact on welfare is given by:

∫
I

(1−WE(I))
(

1−H(θ̃(I)|I)
)
dF (I) +

∫
I

h(θ̃(I)|I)
∣∣∣ ∂θ̃(I)

∂G(I)

∣∣∣ (τyhθ̃(I)− G(I)
)
dF (I) = 0.

and hence for WE(I) = 1
λ
∀ I:

∫
I

(
1− 1

λ

)(
1−H(θ̃(I)|I)

)
dF (I) +

∫
I

h(θ̃(I)|I)
∣∣∣ ∂θ̃(I)

∂G(I)

∣∣∣ (τyhθ̃(I)− G(I)
)
dF (I) = 0.

Here we see that λ = 1 would be consistent with G(I) = τyhθ̃(I) for all I. Recall that the

government budget constraint is given by:

∫
R+

∫ θ̃(I)

θ

τyH dH(θ|I)dF (I) +

∫
R+

∫ θ

θ̃(I)

(τyH (1 + θ)− G(I)) dH(θ|I)dF (I)− F̄ = 0.

If the exogenous revenue requirement F̄ is such that the budget constraint holds for G(I) =

τyhθ̃(I) for all I, then we obtain λ = 1 and the formula in Proposition 1 becomes

G(I) = τ (F − tr(I)) . (9)

Assume that instead the budget constraint would be violated and this level of �nancial aid can

not be �nanced. Then we have λ > 1 and hence WE(I) < 1 ∀ I. Generally, we could also have

the case where λ < 1. E.g. assume that F̄ = −∞. In this case, there would be in�nitely many

public funds available for �nancial aid and therefore the marginal value of public funds would be

zero. But of course this is only of theoretical interest.

The fact that the marginal value of public funds is not equal to unity even though preferences

are linear may seem in contrast to the optimal income tax literature, where it is a standard result

that the marginal value of public funds is equal to one for quasi-linear preferences and in other

words the average welfare weights is equal to one, see e.g. Saez (2002). The reason is that the

policy instruments that we consider are such that there is no lump sum element. While the

�nancial aid schedule G(I) of course has an intercept G(0) that can optimally be chosen, this

is no lump sum transfer in the classical sense because it only reaches college students and not

individuals who forgo college. Therefore, varying this lump sum component also has incentive
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e�ects on the college decision and one cannot just pay out a dollar to everyone without a�ecting

behavior.

2.3 Proof of Corollary 1

Di�erentiating (4) w.r.t. I yields:

G ′(I) = −τtr′(I) + (1− τ)
∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

(tr′(I) + G ′(I)) (1−WE)

where we used θ̃(I) = F−tr(I)−G(I)
(1−τ)yH

. and therefore θ̃′(I) = −tr′(I)−G′(I)
(1−τ)yH

. Solving for G ′(I) we get

G ′(I) =
−τtr′(I) + (1− τ)

∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

tr′(I)(1−WE)

1− (1− τ)
∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

(1−WE)

which proves Corollary 1 since by assumption tr′(I) > 0 and log concavity of the skill distribution

implies
∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

< 0.

2.4 Proof of Corollary 2

Di�erentiating (4) w.r.t. I yields:

G ′(I) = −τtr′(I)+(1−WE) (1− τ)

∂
(

1−H(θ̃(I)|I)
h(θ̃(I)|I)

)
∂θ̃(I)

(tr′(I) + G ′(I))− yH (1− τ)
∂
(

1−H(θ|I)
h(θ|I)

)
∂I

∣∣∣∣∣
θ=θ̃(I)


Hence we obtain

G ′(I) =

−τtr′(I) + (1−WE) (1− τ)

∂( 1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

tr′(I)− yH (1− τ)
∂( 1−H(θ|I)

h(θ|I) )
∂I

∣∣∣∣∣
θ=θ̃(I)


1− (1− τ)

∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

(1−WE)

which proves Corollary 2 since by assumption tr′(I) > 0, log concavity of the skill distribution

implies
∂
(

1−H(θ̃(I))

h(θ̃(I))

)
∂θ̃(I)

< 0 and we assumed

∂
(

1−H(θ|I)
h(θ|I)

)
∂I

> 0 ∀ θ, I.
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3 Estimation and Calibration

3.1 Current Tax Policies and Tuition

To capture current tax policies, we use the approximation of Heathcote et al. (2017), which has

been shown to work well in replicating the US tax code. Since this speci�cation does not contain

a lump-sum element, we slightly adjust this schedule. We set the lump sum element of the tax

code T (0) to minus $1,800 a year. For average incomes this �ts the deduction in the US-tax code

quite well.10 For low incomes this re�ects that individuals might receive transfers such as food

stamps.11

For tuition costs, we take average values for the year 2000 from Snyder and Ho�man (2001) for

the regions Northeast, North Central, South, and West, as they are de�ned in the NLSY. We also

take into account the amount of money that is spent per student by public appropriations, which

has to be taken into account for the �scal externality. The average values are $7,434 for annual

tuition and $4,157 for annual public appropriations per student. Besides these implicit subsidies,

students receive explicit subsidies in the form of grants and tuition waivers. We estimate how this

grant receipt varies with parental income and ability in Appendix 3.2 using information provided

in the NLSY97. We �nd a strong negative e�ect of parental income on �nancial aid receipt.

Additionally, we can capture merit-based grants by the conditional correlation of AFQT scores

with grant receipt. Finally, we calibrate the exogenous budget element F̄ in the following way.

For the current U.S. polices, we calculate the present value of �nancial aid spending and the

present value of tax revenues collected from the cohorts that we consider (born between 1980 and

1984 from the NLSY97) and obtain F̄ from the di�erence between the two.

We categorize the following 4 regions:

• Northeast: CT, ME, MA, NH, NJ, NY, PA, RI, VT

• North Central: IL, IN, IA, KS, MI, MN, MO, NE, OH, ND, SD, WI

• South: AL, AR, DE, DC, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN , TX, VA, WV

• West: AK, AZ, CA, CO, HI, ID, MT, NV, NM, OR, UT, WA, WY

We base the following calculations on numbers presented by Snyder and Ho�man (2001). Table

313 of this report contains average tuition fees for four-year public and private universities.

According to Table 173, 65% of all four-year college students went to public institutions, whereas

10Guner et al. (2014) report a standard deduction of $7,350 for couples that �le jointly. For an average tax
rate of 25% this deduction could be interpreted as a lump sum transfer of slightly more than $1,800.

11The average amount of food stamps per eligible person was $72 per month in the
year 2000. Assuming a two person household gives roughly $1,800 per year. Source:
http://www.fns.usda.gov/sites/default/�les/pd/SNAPsummary.pdf
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35% went to private institutions. For each state we can therefore calculate the average (weighted

by the enrollment shares) tuition fee for a four-year college. We then use these numbers to

calculate the average for each of the four regions, where we weigh the di�erent states by their

population size. We then arrive at numbers for yearly tuition & fees of $9,435 (North East), $7,646

(North Central), $6,414 (South) and $7,073 (West). For all individuals in the data with missing

information about their state of residence, we chose a country wide population size weighted

average of $7,434.

Tuition revenue of colleges typically only covers a certain share of their expenditure. Figures

18 and 19 in Snyder and Ho�man (2001) illustrate by which sources public and private colleges

�nance cover their costs. Unfortunately no distinction between two and four-year colleges is avail-

able. From Figures 18 and 19 we then infer how many dollars of public appropriations are spent

for each dollar of tuition. Many of these public appropriations are also used to �nance graduate

students. It is unlikely that the marginal public appropriation for a bachelor student therefore

equals the average public appropriation at a college given that costs for graduate students are

higher. To solve this issue, we focus on institutions �that primarily focus on undergraduate ed-

ucation� as de�ned in Table 345. Lastly, to avoid double counting of grants and fee waivers,

we exclude them from the calculation as we directly use the detailed individual data about �-

nancial aid receipt from the NLSY (see Section 3.2). Based on these calculations we arrive at

marginal public appropriations of $5,485 (Northeast), $4,514 (North Central), $3,558 (South),

$3,604 (West) and $4,157 (No information about region).

3.2 Estimation of Grant Receipt

Grants and tuition subsidies are provided by a variety of di�erent institutions. Pell grants, for

example, are provided by the federal government. In addition, there exist various state and

university programs. To make progress, similar to Johnson (2013) and others, we go on to

estimate grant receipt directly from the data.

Next, we estimate the amount of grants conditional on receiving grants as a Tobit model:

gri = αgr + f(Ii) + βgr4 AFQTi + βgr5 depkidsi + εgri . (10)

where f(Ii) is a spline function of parental income and ε
gr
i represents measurement error. Besides

grant generosity being need-based (convexly decreasing), generosity is also merit-based as β̂gr4 > 0

and increases with the number of other dependent children (besides the considered student) in

the family.
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Table 1: OLS for Grants

AFQT Dependent Children

Coe�cient 39.40*** 321.75**

Standard Error ( 5.03) (106.39)

N=968. * p ≤ 0.10, ** p ≤ 0.05, *** p ≤ 0.01.

3.3 Wage Estimation

We specify and estimate wage life-cycle paths as follows. Our procedure �rst estimates labor

earnings life-cycle pro�les and then calibrates the respective wage pro�les based on those estimates

in a second step. Speci�cally, we use the following functional form for earnings y :

∀ e = H,G : log yeit = βes0 + βeθ log θi + βet1t+ βet2t
2 + βet3t

3 + ve∗i . (11)

We estimate separate parameters for high school graduates and college graduates.12 The

parameter βeθ captures di�erent returns to ability for agents of a given education level. The

extent to which the college wage premium is increasing in ability is determined by the ratio
βGθ
βHθ

. We �nd a ratio larger than 1, which implies a complementary relationship between initial

ability and education. Our estimates can be found in Table 2. ve
∗
i is a random e�ect that captures

persistent di�erences in wages conditional on the agent's schooling choice. We assume that agents

do not know the value of ve
∗
i at the beginning of the model, but that its value is revealed as soon

as the agents �nish their education and enter the labor market. Uncertainty over ve
∗
i creates

uncertainty over an agent's returns to college. After ve
∗
i there is no further uncertainty about an

agent's wage path.

The age earnings coe�cients βet1, β
e
t2 and βet3 are education dependent but independent from

gender. However, since we assume di�erent labor supply elasticities for men and women, the

implied wage life-cycle pro�les will di�er across gender because how a given earnings path maps

into wages depends on the labor supply elasticity. The age coe�cients are estimated from the

NLSY79 since individuals from the NLSY97 are only observed until their mid-30s. In sum, this

procedure pins down a stochastic distribution of potential life-cycle wage paths for each individual,

which depend on gender, ability, and the education decisions.13

We estimate the age coe�cients βet1, β
e
t2 , βet3 using panel data from the NLSY79 since indi-

viduals in the NSLY97 are too young (born between 1980 and 1984) such that we can infer how

wages evolve once individuals are older than 35. In the second step, we build the transformed

variable l̃og yeit = log yeit− βet t− βet2t2− βet3t3, which takes out age a�ects from yearly log incomes.

Using the NLSY97, we estimate the relationship of log income with gender and log AFQT, esti-

12Dropouts have the same wage parameters as high school graduates except for the constant term. This gives
us a very good �t for the relative earnings of dropouts, consistent with the evidence in Lee et al. (2017).

13We use these same parameter estimates to calculate life-cycle earnings for parents. We choose the idiosyncratic
competent of earnings, ve∗i , to generate earnings at age 45 equal to the parental earnings levels we observe in the
data.
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mating separate models and coe�cients by education level. We use a random-e�ects estimator

and assume normality, yielding education speci�c variances for vei . The estimates are displayed in

Table 2. There is a signi�cant college premium in the model, although the high-school constant

is larger, because we have used education dependent age pro�les.

College Educated

Female Log AFQT Education Constant Variance vi

Coe�cient -0.14*** 0.47*** 3.06*** 0.42

Standard Error (0.02) (0.07) (0.35)

High-School Educated

Female Log AFQT Education Constant Variance vi

Coe�cient -0.25*** 0.31*** 7.11*** 0.36

Standard Error (0.01) (0.03) (0.35)

Table 2: Regressions: Income

Notes: Random e�ect models, estimated with NLSY9. Dependent variable is log yearly income, cleaned

for age e�ects. Age e�ects are obtained by estimating a cubic polynomial on the NLSY79. These age

coe�cients are available upon request. N=10,165 (College) and N=19,955 (High-School) . * p ≤ 0.10,

** p ≤ 0.05, *** p ≤ 0.01.

Next, we explain how to go from the estimated income to the wage pro�les. The reason why

we do not estimate wage pro�les directly is that we append Pareto tails to the income distribution

on which more reliable information is available. Top incomes are underrepresented in the NLSY

as in most survey data sets. Following common practice in the optimal tax literature (Piketty and

Saez, 2013), we therefore append Pareto tails to each income distribution, starting at incomes

of $150,000. We set the shape parameter α of the Pareto distribution to 1.5 for all income

distributions.

Next we describe the mapping from y to w as in Saez (2001). Given the utility function

we assume with no income e�ects, in each year individuals solve a static labor supply problem

where optimal labor supply in that year only depends on the current wage (which evolves over

the life-cycle) and marginal tax distortions. It is easy to show that the �rst-order condition for

an individual facing a marginal tax rate schedule is

lnw =
ε+ τ

1 + ε
ln y − 1

1 + ε
ln(λ (1− τ)),
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if the tax function is of the form T (y) = y − ρy1−τ . Using the estimates from the regression

model, we can express the wage for a given type (age, gender, ability, education) as at age t:

lnwit =
ε+ τ

1 + ε

(
β̂es0 + β̂eθ log θi + β̂et t+ β̂et2t

2 + β̂et3t
3 + ve

∗

i

)
− 1

1 + ε
ln(λ (1− τ)).

Parent's Earnings Pro�le Calibration We assume that parental earnings are determined

by a similar process to the child's earnings. Speci�cally, parental earnings are given by

∀ e = H,G : log yPt = βParEdut1 ParAget + βParEdut2 ParAge2
t + βParEdut3 ParAge3

t + vP .

where ParAget is the parent's age in period t. The age coe�cients, βParEdut1 , βParEdut2 , and βParEdut3

are taken from the child's earnings regression. We assume that the parent's age coe�cients are

given by the college age coe�cients if at least one parent has attended college, otherwise the

parent's age coe�cients are given by the age coe�cients for a child that has not attended college.

The term vP represents persistent, idiosyncratic di�erences in earnings across parents. We

assume that we observe the parental income variable I when parents are 40 years old. Therefore,

we must have y40 = I for each parent we observe in data. We therefore choose vP such that the

predicted parental income at age 40 is equal to the observed parental income variable I. We can

write this as

vP = log I −
(
βParEdut1 ParAget + βParEdut2 ParAge2

t + βParEdut3 ParAge3
t

)
.

3.4 Likelihood Function

Assume that the econometrician observes transfers tre,oi , which di�er from true transfers, tre?i , by

an error term etr. Further, we assume this error term is normally distributed: etr ∼ N
(
0, σe

tr)
.

We suppress all dependencies for notational convenience. Then, given parameters Γ, the likelihood

contribution of an agent who graduates from college after TEi years, has a sequence of work in

college decisions of
{
`Eit
}TEi
t=1

, and has observed college transfers trE,oi is14

Li
(
ei = G, trE,oi ,

{
`Eit
}TEi
t=1
|Γ
)

=

Pr (E) fN

(
trE?i − tr

E,o
i

σetr

)
1

σetr

 TEi∏
t=1

Pr
(
`Eit
) ,

(12)

where fN is the standard normal PDF, and where the probability of initially enrolling in college,

Pr (E), and the choice probability of not dropping out and working `Eit in college, Pr
(
`Eit
)
, are

given by the extreme-value choice probabilities as

14The probability of this event in fact also depends on the graduation probabilities PrGrad
t . But these are just

constant factors in the likelihood, which is why refrain from putting them here.
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Pr (E) =
exp

(
Ṽ E/σE

)
exp

(
Ṽ E/σE

)
+ exp

(
Ṽ H/σE

)
and

Pr
(
`Et
)

=
exp

(
Ṽ
E,`Et
t /(σ`

E
λ)
)(∑

`∈{0,PT,FT} exp
(
Ṽ E,`
t /(σ`

E
λ)
))λ−1

(
exp

(
Ṽ D
t − δ/σ`

E

))
+
(∑

`∈{0,PT,FT} exp
(
Ṽ E,`
t /(σ`Eλ)

))λ ,
where σE and σ`

E
are parameters governing the variance of the enrollment shock and college

working shock, respectively, and λ is a nesting parameter and where value functions with tildes

represent the value function minus the idiosyncratic preference draws.

The likelihood contribution of an agent who drops out in year TDi , has a sequence of work in

college decisions of
{
`Eit
}T dropout−1

t=1
, and has observed college transfers trE,oi is

Li
(
ei = D, trE,oi ,

{
`Eit
}TDi −1

t=1
|Γ
)

=

Pr (E) fN

(
trE?i − tr

E,o
i

σetr

)
1

σetr

TDi −1∏
t=1

Pr
(
`Eit
)Pr (DTD) ,

(13)

where the probability of dropping out, Pr (DTD), is given by the extreme value choice probabilities

as

Pr (DTD) =

(
exp

(
Ṽ D
TD − δ/σ

`E
))

(
exp

(
Ṽ D
TD
− δ/σ`E

))
+
(∑

`∈{0,PT,FT} exp
(
Ṽ E,`
TD

/(σ`Eλ)
))λ .

The likelihood function of an agent who enters the labor force directly and is observed with

transfers trH,oi is given by

Li
(
ei = H, trH,oi |Γ

)
= (1− Pr (E)) fN

(
trH?i − tr

H,o
i

σetr

)
1

σetr
. (14)

We therefore choose the parameters Γ to maximize the log likelihood:

max
Γ

∑
i

logLi (·|Γ) .
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3.5 Nonparametric Identi�cation of Utility Function

In this section, we provide a formal discussion on how the psychic costs are nonparametrically

identi�ed. The argument closely follows Matzkin (1991, 1992, 1993) and Bajari et al. (2016).

Setup and Notation Consider an agent currently enrolled in college. The agent chooses

between dropping out of college, and continuing in college and a labor supply quantity. Let

j = {0, PT, FT,D} index possible choices for an agent who is enrolled in college (enrolling and

not working, enrolling and working part time, enrolling and working full time, and dropping out.)

Agents possess a vector X of demographics and family income I. We write the choice speci�c

value function associated with each continuation and work option (j ∈ {0, PT, FT} ) as:

V j
t

(
X, I, ãt, ε

j
t

)
= max

ct

[
c1−γ
t

1− γ
− h (X, j) + εjt + βE [Vt+1 (·)]

]
subject to

ct = ãt (j)− at+1

and the borrowing constraint. We de�ne:

ãt (j) = `Et (j)ω + at (1 + r (at, I))−F(X) + G (X, I) + trEt (X, I,G(X, I))

as the total assets available conditional on an agent's labor supply and let

ãt = (ãt (0) , ãt (PT ) , ãt (FT ) , at) ∈ A give the vector of available assets associated with each

choice. h (X, j) is a continuous function in X that maps the agent's characteristics and choices

into the deterministic component of psychic cost and εjt are unobservable random terms repre-

senting the idiosyncratic component of psychic costs. Note that while the psychic cost function

is allowed to depend on the vector of observable characteristics X, the vector of e�ective assets

ãt is excluded from the psychic cost function.

The choice speci�c value function for dropping out (j = D) is:

V D
t (X, I, ãt, ε

D
t ) = E

[
V W
t (X, I, e = D, at, wt)

]
− d (X) + εDt

where d (X) is a continuous function which represents the deterministic component of the psychic

cost of dropping out and εDt is an unobservable random term representing the idiosyncratic

component of the psychic cost of dropping out.

Let ηjt = εjt − εDt for j ∈ {0, PT, FT} represent the idiosyncratic component of each continua-

tion and labor supply option minus the idiosyncratic component of the psychic cost of dropping

out. The distribution of ηt =
(
η0
t , η

PT
t , ηFTt

)
is characterized by the joint CDF:

Fη (η̃) = P
(
η0
t ≤ η̃0, ηPTt ≤ η̃PT , ηFTt ≤ η̃FT

)
.
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We assume the distribution of η is uncorrelated with everything else in the model such that

Fη (η̃|X) = Fη (η̃). Further, we assume that Fη (η̃) is continuous and strictly increasing. As

is standard in discrete choice models, only the distribution of ηj = εj − εD is identi�ed, not

the distribution of the ε's themselves. Further, let ĥ (X, j) = h (X, j) − d(X) be the di�erence

between the psychic cost function associated with continuation in college and the psychic cost

function associated with dropping out. We assume the discount factor, β, is known.

Identi�cation In the quantitative version of the model, we made parametric assumptions about

the functions h(X, j) and d(X) and the distribution of the idiosyncratic preference shocks. Here

we show the conditions under which the model is identi�ed without these parametric and distri-

butional assumptions.

We prove identi�cation in four steps. First, we focus on agents in their �nal year of college.

Let this year be denoted by t = TG. We show that the parameter γ and the distribution of η can

be identi�ed from variation in choice probabilities and e�ective assets of agents in their �nal year

of college (t = TG), holding demographics X and parental income I constant. Second, once Fη is

identi�ed, we can use variation inX to identify ĥ (X, j), the di�erences in the common component

of psychic costs. Third, once Fη and ĥ (X, j) are identi�ed, we show that d (X) is identi�ed by the

dropout probabilities of agents in the penultimate year of college (t = TG − 1). Finally, we show

that the distribution of the initial enrollment shock is identi�ed by the probabilities of college

enrollment.

Consider individuals in their sixth year of college who graduate with certainty at the end of

the period. Note that we can rewrite the choice speci�c Bellman equation for each work in college

option (j ∈ {0, PT, FT}) in year t = TG as

V j
TG

(
X, I, ãTG , ε

j
TG

)
= Ṽ j

TG
(X, I, ãTG : γ)− h (X, j) + εjTG

where we de�ne

Ṽ j
TG

(X, I, ãTG : γ) = max
cTG

[
c1−γ
TG

1− γ
+ βE

[
V W
TG+1 (X, I, e = G, aTG+1, wTG+1)

]]

subject to the budget constraint and borrowing constraint. Since the parameters of the wage

equation are identi�ed directly from the earnings data,15 the function Ṽ j
TG

(· : γ) is known up to

the parameter γ. Similarly, we can write the value function associated with dropping out as:

V D
TG

(X, I, ãTG , ε
D
TG

) = Ṽ D
TG

(X, I, ãTG : γ)− d (X) + εDTG

where

Ṽ D
TG

(X, I, ãTG : γ) = E
[
V W
TG

(X, I, e = D, aTG , wTG)
]

15This is because the wage equation is only a function of observables and idiosyncratic shocks that are uncor-
related with everything else in the model.
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is a known function up to the parameter γ.16

The relationship between the choice probabilities and the vector ãTG , holdingX and I constant

identi�es γ. To see this, note that the probability of dropping out of college is given by

P (D|X, I, ãTG) =

Prob

(
Ṽ D
TG

(X, I, ãTG : γ)− d (X)−
(
Ṽ j′

TG
(X, I, ãTG (j′) : γ)− h (X, j′)

)
≥ ηj

′

TG

∀j′ ∈ {0, PT, FT}
)

and the probability of choosing j = {0, PT, FT} is given by

P (j|X, I, ãTG) =

Prob

(
Ṽ D
TG

(X, I, ãTG : γ)− d (X)−
(
Ṽ j
TG

(X, I, ãTG (j) : γ)− h (X, j)
)
≤ ηjTG ,

Ṽ j
TG

(X, I, ãTG (j) : γ)− h (X, j)−
(
Ṽ j′

TG
(X, I, ãTG (j′) : γ)− h (X, j′)

)
≥ ηj

′

TG
− ηjTG

∀j′ ∈ {0, PT, FT} \ {j}
)

Therefore, any vector ãTG such that

Ṽ D
TG

(X, I, ãTG : γ)− Ṽ j
TG

(X, I, ãTG (j) : γ) = kj ∀ {0, PT, FT}

where k = (k0, kPT , kFT ) is vector of constants implies the same set of choice probabilities, holding

X and I constant. Consider two vectors ã′Tg and ã
′′
Tg

such that P
(
j|X, I, ã′TG

)
= P

(
j|X, I, ã′′Tg

)
for each j ∈ {0, PT, FT,D}. Then we must have:

Ṽ D
TG

(
X, I, ã′TG : γ

)
− Ṽ j

TG

(
X, I, ã′TG (j) : γ

)
= Ṽ D

TG

(
X, I, ã′′TG : γ

)
− Ṽ j

TG

(
X, I, ã′′TG (j) : γ

)
∀j ∈ {0, PT, FT}

This identi�es γ.

Once γ is identi�ed, the deterministic portions of the utility functions, (Ṽ D
TG

(X, I, ãTG) −
d (X)) and Ṽ j

TG
(X, I, ãTG)− h (X, j) are additively separable into a function that is known and a

continuous function of the remaining variables. We remove the dependence of Ṽ D
TG

(·) and Ṽ j
TG

(·)
on γ now that γ is identi�ed.

We now turn to the identi�cation of the psychic costs. Without any further normalizations,

the mean of the idiosyncratic components of psychic costs are not separately identi�ed from

additive constants in the psychic cost function h and the dropout function d. We therefore need

16This is true because all of the parameters which determine wages and the disutility of labor supply in the
labor market are known.
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to make four normalizations, one for each option j ∈ {0, PT, FT,D}. First, we normalize the

idiosyncratic shock associated with dropping out of college to be mean 0: E
(
εD
)

= 0. Next, let X̄

denote a particular value of X that is known to the econometrician. We normalize ĥ
(
X̄, j

)
= µj,

where µj is a known value for all j ∈ {0, PT, FT}.17

Let

V̂ D
TG

(X, I, ãTG) =(
Ṽ D
TG

(X, I, ãTG)−
(
Ṽ 0
TG

(X, I, ãTG)− ĥ (X, j = 0)
)
,

Ṽ D
TG

(X, I, ãTG)−
(
Ṽ PT
TG

(X, I, ãTG)− ĥ (X, j = PT )
)
,

Ṽ D
TG

(X, I, ãTG)−
(
Ṽ FT
TG

(X, I, ãTG)− ĥ (X, j = FT )
))

.

be the 3 dimensional vector which gives the deterministic portion of utility associated with drop-

ping out minus the deterministic utility of each of the other three options. Fixing X at the known

vector X̄, we can write these objects as:

V̂ D
TG

(
X̄, I, ãTG

)
=(

Ṽ D
TG

(
X̄, I, ãTG

)
−
(
Ṽ 0
TG

(
X̄, I, ãTG

)
− µ0

)
,

Ṽ D
TG

(
X̄, I, ãTG

)
−
(
Ṽ PT
TG

(X, I, ãTG)− µPT
)
,

Ṽ D
TG

(
X̄, I, ãTG

)
−
(
Ṽ FT
TG

(
X̄, I, ãTG

)
− µFT

))
.

The vector V̂ D
TG

(
X̄, I, ãTG

)
is known by the econometrician, given that the function Ṽ j

TG
(·) is

known for all j and because µj is a known value for all j.

The identi�cation of ĥ and Fη then follows from the arguments in Matzkin (1993).18 The

probability of dropping out can be written as:

P
(
D|X̄, I, ãTg

)
= Fη

(
V̂ D
TG

(
X̄, I, ãTg

))
.

17In the quantitative version of the model, we do not normalize the level of the deterministic portion of psychic
cost, which is dictated by the parameter κ0. Instead, we assume that the idiosyncratic component of psychic costs
are distributed as nested Logit, which normalizes the mean of the idiosyncratic components of psychic costs. We
make a di�erent normalization here by normalizing the level of the deterministic portion of the psychic cost, as it
makes the proof a bit easier to follow.

18See Theorem 2.
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Assume for all η̃ ∈ R3, there exists a vector ãTG with positive density conditional on X̄ such that

V̂ D
TG

(
X̄, I, ãTG

)
= η̃.19 Then Fη can be recovered from choice probabilities.

Once the distribution Fη is known, we can recover the function ĥ as in Matzkin (1991): the

choice probabilities at di�erent levels of X identify the respective values of ĥ.

This leaves us with identi�cation of d(X) and the distribution of the initial enrollment cost

εE. First, we consider the identi�cation of the dropout cost d(X). Note that we have already

identi�ed the function ĥ, which determines the deterministic portion of utility di�erences across

choices of enrolled agents. The function d(X) pins down the level of utility of enrolled agents.

Speci�cally, holding ĥ constant, increasing d(X) lowers the �ow utility levels of all choices for

enrolled agents by the same amount. In our model, dropping out plays the role of a terminating

action�an action which ends the agent's dynamic discrete choice problem. Therefore, the level

of utility of enrolled agents, which is determined by the function d(X), is identi�ed following

the arguments of Bajari et al. (2016). In essence, if an agent chooses to drop out in the current

period, she will not be enrolled in college in the following period. Therefore, a higher level

of utility associated with being enrolled in college increases the value of not dropping out and

therefore decreases the likelihood of dropping out.

To see this explicitly, consider the problem of an agent in the penultimate year of college,

TG − 1. For ease of exposition, we assume that PrGradTG−1 = 0 but the argument is the same with

positive probability of graduation. We can write the agent's choice speci�c utility functions in

the year TG − 1 as

V j
TG−1

(
X, I, ãTG−1, ε

j
TG−1

)
= max

ct

[
c1−γ
t

1− γ
− ĥ (X, j) + εjTG−1 − d (X) + βE

[
V E
TG

(X, I, aTG , εTG)
]]

for j ∈ {0, PT, FT}. The continuation value is given by

V E
TG

(X, I, aTG , εTG) = max
j∈{0,PT,FT,D}

[V j
TG

(X, I, aTG , εTG)].

The choice speci�c utility functions in period TG can be written as

V j
TG

(
X, I, ãTG , ε

j
TG

)
= Ṽ j

TG
(X, I, ãTG)− ĥ (X, j) +

(
ηjTG + εDTG

)
− d(X)

for j ∈ {0, PT, FT} and

V D
TG

(X, I, ãTG , ε
D
TG

) = Ṽ D
TG

(X, I, ãTG) + εDTG − d (X) .

19We do not expect this assumption to hold in practice, given that we have �nite data and there is limited
variation in assets in the model. As such, we make distributional and parametric assumption on the psychic
costs in our quantitative model. The goal of this exercise is to state the necessary conditions for non-parametric
identi�cation.
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Note that −d(X), which pins down the level of utility of an agent enrolled in college, enters

additively into V j
TG

(·), for each option j. We can therefore write the expectation of continuation

value as

E
[
V E
TG

(X, I, aTG , εTG)
]

= ẼV
E

TG
(X, I, aTG , εTG)− d(X)

where we de�ne

ẼV
E

TG
(X, I, aTG) = E

[
max

{
Ṽ 0
TG

(X, I, ãTG)− ĥ (X, j = 0) + η0
TG
, Ṽ PT

TG
(X, I, ãTG)− ĥ (X, j = PT ) + ηPTTG ,

Ṽ FT
TG

(X, I, ãTG)− ĥ (X, j = FT ) + ηFTTG , Ṽ
D
TG

(X, I, ãTG)

}]

as the expected value of being enrolled in college next year less the term −d(X), where we have

used the normalization that E
(
εD
)

= 0. Note that the function ẼV
E

TG
(X, I, at) is fully known

by the econometrician, given that 1) the function Ṽ j
TG

(·) is known for all j, 2) the function ĥ (·)
is known, and 3) the distribution Fη is known. We can then rewrite the choice speci�c value

functions for j ∈ {0, PT, FT} in the penultimate period as

V j
TG−1

(
X, I, ãTG−1, ε

j
TG−1

)
= Ṽ j

TG−1 (X, I, ãTG−1)− ĥ (X, j) + εjTG−1 − d (X)− βd (X) ,

where the function we de�ne as

Ṽ j
TG−1 (X, I, ãTG−1) = max

ct

[
c1−γ
t

1− γ
+ βẼV

E

TG
(X, I, aTG)

]
is fully known to the econometrician.

Further, in the penultimate period of college, the value of dropping out is given by

V D
TG−1(X, I, ãTG−1, ε

D
TG−1) = Ṽ D

TG−1(X, I, ãTG−1) + εDTG−1 − d (X) .

where we Ṽ D
TG−1(X, I, ãt) = E

[
V W
TG−1 (X, I, e = D, aTG−1, wTG−1)

]
is a known function. The dif-

ference in the value of dropping out and the value of j ∈ {0, PT, FT} is given by

V D
TG−1(·)− V j

TG−1(·) = Ṽ D
TG−1(X, I, ãTg−1)−

(
Ṽ j
TG−1 (X, I, ãTG−1)− ĥ (X, j) + ηjTG−1 − βd (X)

)
.

The probability of dropping out can then be written as:
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P (D|X, I, ãTG−1) =

Fη

(
Ṽ D
TG−1 (X, I, ãTG−1)−

(
Ṽ 0
TG−1 (X, I, ãTG−1)− ĥ (X, j = 0)− βd (X))

)
,

Ṽ D
TG−1 (X, I, ãTG−1)−

(
Ṽ PT
TG−1 (X, I, ãTG−1)− ĥ (X, j = PT )− βd (X)

)
,

Ṽ D
TG−1 (X, I, ãTG−1)−

(
Ṽ FT
TG−1 (X, I, ãTG−1)− ĥ (X, j = FT )− βd (X)

))
.

Therefore, we can again use the arguments in Matzkin (1991) and Matzkin (1993) to back out

the function d (X) given that the joint distribution of η, the discount factor β, and the ĥ (X, j)

and Ṽ j
TG−1 functions are all known.

Finally, we turn to the initial enrollment cost. The agent's initial enrollment decision can be

written as the binary threshold crossing model:

E
[
V E

1 (X, I, a1 = 0, ε1)
]
− E

[
V W

1 (X, I, e = H, a1 = 0, w1)
]

+ εE > 0,

where
[
V E

1 (·)
]
is the expected value of a �rst year college enrollee and E

[
V W

1 (·)
]
is the expected

value of directly entering the labor market. The functions E
[
V E

1 (·)
]
and E

[
V W

1 (·)
]
are fully

known and continuous. We can therefore identify the distribution of the psychic enrollment cost

using the arguments in Matzkin (1992).

4 Additional Graphs on Model Fit

4.1 Graduation Rates and Enrollment by Gender

Figure 1 shows the college graduation rates as a function of parental income and ability in the

model and in the data. The model is able to replicate these moments well.

Figure 2(a) shows the college enrollment rates for male and female students as a function of

parental income in the model and in the data. Figure 2(b) shows the college enrollment rates for

male and female students as a function of ability in the model and in the data. We can see that

the model is able to replicate these moments quite well.

4.2 Graduation and Dropout Over Time

Figure 3 shows graduation and dropout fractions over time in the model and the data. The solid

red line and the dashed black line show the fraction of the total population that have graduated

as a function of number of years of college completed in the model and the data, respectively. In
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(a) Graduation Rates and Parental Income (b) Graduation Rates and AFQT

Figure 1: Graduation and Enrollment Rates

Notes: The solid (red) line shows simulated enrollment shares by parental income and AFQT

percentile. This is compared to the dashed (black) line which shows the shares in the data.

both the model and the data, graduation rates are very low for students with less than three years

of college. Graduation shares peak at four years before decreasing. The dashed-dotted blue line

and the dotted green line show the fraction of students that drop out in each year in the model

and data, respectively. Dropout shares are slightly downward sloping as a function of years in

college in both the model and the data. This slope is slightly steeper in the model compared to

the data.

4.3 Parental Transfers

We analyze the �t of our model with respect to parental transfers in Figure 4. We can see that

college transfers are strongly increasing in parental income in both the model and data, though

our model slightly underestimates the average college transfers in the data.

4.4 Earnings and College Premia

Table 3 analyzes the performance of the model with respect to earnings dynamics. We can only

compare the model to the NLSY97 data up to age 34 since cohorts in the NLSY97 are born

between 1980 and 1984. The simulated mean earnings across ages are very close to those in

the data. As described in Section 4, we account for top-coding of earnings data by appending

Pareto tails to the observed earnings distribution. As such, average earnings are slightly larger

in model as compared to the data. We match college earnings premia very closely until around
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(a) Enrollment Rates and Parental Income (b) Enrollment Rates and AFQT

Figure 2: Graduation and Enrollment Rates by Gender

Notes: The panel on the left shows the relationship between enrollment rates and parental income in

the model and in the data for females and males. The panel on the right shows the relationship

between enrollment rates and ability in the model and in the data for females and males.

Mean Earnings
College Premia SD(log (y))

Age High-School College

j Model Data Model Data Model Data Model Data

25 22,938 21,348 26,923 25,205 1.17 1.18 0.66 0.59

26 23,747 22,407 29,353 28,300 1.24 1.26 0.67 0.60

27 24,549 23,340 31,829 31,781 1.30 1.36 0.67 0.61

28 25,340 24,022 34,334 33,840 1.35 1.41 0.68 0.62

29 26,117 25,217 36,848 36,254 1.41 1.44 0.69 0.65

30 26,877 25,306 39,354 37,904 1.46 1.50 0.70 0.65

31 27,617 26,449 41,833 40,904 1.51 1.55 0.70 0.66

32 28,334 27,346 44,267 42,954 1.56 1.57 0.71 0.67

33 29,025 28,680 46,639 44,346 1.61 1.55 0.72 0.68

34 29,687 30,494 48,932 46,872 1.65 1.54 0.72 0.67

Notes: Data based on NLSY97 with cohorts born between 1980 and 1984.

Mean earnings expressed in year 2000 dollars. Most recent wave from 2015.

Model based moment results represent results from estimated model. Zero

and small earnings below $300 a month excluded. SD(log y) equal to stan-

dard deviation of log earnings. NLSY97 is top coded at income levels around

$155,000.

Table 3: Earnings Dynamics

age 32. After that, the model and data diverge slightly as more and more college students reach

top-coded earnings in the NLSY97.20

20The e�ect of the fatter right tails we include in the model can also be seen in the �t of standard deviation of
log earnings. The simulated standard deviation of log earnings is 4-7 log points higher than that in the data from
age 25 to age 34.
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Figure 3: Model Fit: Graduation and Dropout Over Time

Notes: The �gure shows simulated graduation and dropout rates in the model versus the NLSY97.

Figure 4: Model Fit: College Transfers and Parental Income

Notes: This �gure on the right shows the present value of parental transfers given by parents of college

enrollees and non-enrollees in data (NLSY97) versus model.

4.5 Earnings Pro�les Model

Figure 5 shows the simulated average for college graduates and high school graduates as a function

of age.

4.6 Untargeted Moments

Responsiveness of Enrollment to Grant Increases. Many papers have analyzed the impact

of increases in grants or decreases in tuition on college enrollment. Deming and Dynarski (2009)

survey the literature. The estimated impact of a $1,000 increase in yearly grants (or a respective

reduction in tuition) on enrollment ranges from 1 to 6 percentage points, depending on the policy
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Figure 5: College and High School Graduate Earnings Pro�les.

reform and research design. A more recent study by Castleman and Long (2016) looks at the

impact of grants targeted to low-income children. Applying a regression-discontinuity design

for need-based �nancial aid in Florida (Florida Student Access Grant), they �nd that a $1,000

increase in yearly grants for children with parental income around $30,000 increases enrollment

by 2.5 percentage points.

Simulating a $1,000 increase in �nancial aid for all individuals in our model leads to a 1.69

percentage point increase in overall enrollment rates and a 2.06 percentage point increase for

students near the studied discontinuity in Castleman and Long (2016). Overall, our simulated

elasticities are fairly consistent with these reduced-form estimates. This gives us con�dence in

our maximum likelihood estimates, especially given that these reduced form estimates were not

targeted in estimation.

Importance of Parental Income. Individuals with higher parental income are more likely to

receive a college degree. However, it is not obvious whether this is primarily driven by parental

income itself or by variables correlated with parental income and college graduation. Using income

tax data and a research design exploiting parental layo�s, Hilger (2016) �nds that a $1,000 increase

in parental income leads to an increase in college enrollment of 0.43 percentage points. To test

our model, we increased parental income for each individual by $1,000 and obtained increases

in college enrollment by 0.18 percentage points. Our model predicts a moderate direct e�ect of

parental income, smaller but in line with Hilger (2016).

Returns for Marginal Students. We �nd a return to one year of schooling of 12.1% for

marginal students. This re�ects that marginal students are of lower ability on average than

inframarginal students and is also in line with Oreopoulos and Petronijevic (2013). A clean way

to infer returns for marginal students is found in Zimmerman (2014). In his study, students are

marginal with respect to academic ability, measured by a GPA admission cuto�. He �nds that

these students have earnings 22% higher than those just below the cuto�, when earnings are
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measured 8 to 14 years after high school graduation. We perform a similar simulation and make

use of the fact that the NLSY also provides GPA data. In fact, our model gives a return to college

of 26.3%, measured 8 to 14 years after high school graduation, for students with a GPA in this

neighborhood.21

5 Additional Decompositions

5.1 Marginal and Inframarginals Evaluated at Current Financial Aid

Levels

In the main text, we plotted the share of marginal enrollees and inframarginal enrollees at a �at

�nancial schedule for a number of model speci�cations. In this section, we repeat this exercise

but plot the share of marginal enrollees and inframarginal enrollees at the current �nancial aid

schedule. The results are very similar. The relationship between parental income and share of

inframarginal students has become weaker (and eventually becomes negative), re�ecting that the

current �nancial aid schedule is decreasing in parental income, see Figure 6(a). Further, children

with high income parents are more likely to be marginal with respect to �nancial aid relative to

graph in the main text, again re�ecting that they receive less �nancial aid than children with low

income parents, see Figure 6(b).

5.2 An Alternative Decomposition: Di�erent Order

In the main paper, we perform a model-based decomposition exercise to better understand which

drive the optimal progressivity result. In this appendix, we perform a similar decomposition but

alter the order in which we change various components to the model. In particular, we �rst remove

the relationship between parental income and parental transfers, before proceeding to remove the

relation between parental income and ability and the relation between parental education and

the psychic costs of college. As before, all changes to the model speci�cation are cumulative.

We �rst analyze the determinants of the positive relation between college enrollment and

parental income in Figure 7(a) and the negative relationship between share of marginal students

and parental income in Figure 7(a). The simulated relationships at a �at �nancial aid schedule

are shown in the solid lines in the two �gures. In this baseline case, college enrollment rates are

strongly increasing in parental income while the share of marginal students are strongly decreasing

in parental income. Next, in the turquoise lines, we set parental transfers exogenously to the mean

21Finally, we do not account for di�ering rates of unemployment and disability insurance rates. Both numbers
are typically found to be only half as large for college graduates (see Oreopoulos and Petronijevic (2013) for
unemployment and Laun and Wallenius (2016) for disability insurance). Further, the �scal costs of Medicare are
likely to be much lower for individuals with a college degree. Lastly, we assume that all individuals work until 65
not taking into account that college graduates on average work longer (Laun and Wallenius, 2016). These facts
would generally strengthen the case for an increase in college subsidies.
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(a) Inframarginal Enrollees (b) Marginal Students

Figure 6: Model-Based Decomposition for Marginal and Inframarginal Students at Current Grant
Schedule

Notes: We plot the share of college enrollees and marginal college enrollees given the current US aid

schedule for di�erent model speci�cations. The solid red line represent the baseline model. For the

dashed black line we simulate a model version for which we remove the correlation between ability and

parental income. For the dashed-dotted blue line we simulate a model version for which we additionally

remove the correlation between the psychic costs and parental education. For the dotted pink line we

simulate a model version for which additionally removes labor market riskiness; i.e. education decisions

are made with no uncertainty about future wages. For the turquoise line with crosses we simulate a

model version for which we set parental transfers to the mean parental transfers in the data,

conditional on education.

levels for enrollees and non-enrollees and assume no families are eligible for subsidized Sta�ord

loans. From Figure 7(a) we can see that the positive relation between college enrollment and

parental income weakens slightly. The relation between parental income and share of marginal

enrollees, however, �attens completely. The black dotted line and the blue dash-dotted line show

the cases in which we remove the correlation between parental income and ability and in which we

remove the relation between parental education and psychic costs, respectively. After removing

these two factors there is no interesting heterogeneity between parental income groups. Removing

these two relationships both weak the relationship between parental income and enrollment. In

both these simulations, the gradient between parental income and share of marginal students

remains �at.

We now simulate the respective optimal �nancial aid schedule under each model speci�cation

in Figure 8. When we remove the relationship between parental income and parental transfers

(the turquoise line in Figure 8), the optimal �nancial aid schedule �attens. This �attening of the

optimal schedule occurs because the relationship between parental income and share of marginal

enrollees is �at. However, there optimal aid is still positive�ranging from above $6,500 for the
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(a) Inframarginal Graduates (b) Marginal Students

Figure 7: Alternative Model-Based Decomposition for Marginal and Inframarginal Students at
Flat Grant Schedule

Notes: We plot the share of college enrollees and marginal college enrollees given a �at �nancial aid

schedule for di�erent model speci�cations. The solid red line represent the full model. For the turquoise

line with crosses we simulate a model version for which set parental transfers to the mean parental

transfers in the data, conditional on education. For the dashed black line we simulate a model version

for which we remove the correlation between ability and parental income. For the dashed-dotted blue

line we simulate a model version for which we additionally remove the correlation between the psychic

costs and parental education.

poorest families to below $4,500 for the wealtheat families. The optimal aid schedule is progressive

because high income children are still much more likely inframarginal. When we remove the

positive ability-income correlation (the black dashed line) and the relationship between parental

education and psychic costs we �atten the relationship between parental income and share of

inframarginal students. The optimal aid schedule �attens as a result.

5.3 Decomposition with Removal of Borrowing Constraints

In Figures 9(a) and 9(b), we perform the same decomposition as in the main paper but additionally

remove borrowing constraints before equalizing parental transfers. We additionally assume that

no families are eligible for subsidized Sta�ord loans throughout the decomposition. Figure 10

shows the resulting optimal �nancial aid under each model speci�cation.

As before, the red line shows the baseline case, the black dotted line shows the case where

we remove the ability correlation, the blue dash-dotted line shows the case where we remove the

correlation between psychic cost of parental education, and the dotted pink line show the case

with no labor market uncertainty. These lines tell essentially the same story as the decomposition

in the main body. The green dotted lines show the case in which we remove borrowing constraints.

As a result, the number of inframarginal students increases for all income groups, as student no
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Figure 8: Optimal Financial Aid for Di�erent Model Speci�cations

Notes: For each model speci�cation (see Figure 7), we illustrate the respective optimal �nancial aid

schedule.

longer have to deal with borrowing constraints in college. Additionally, the share of marginal

enrollees drops substantially for all parental income groups. As students are no longer a�ected

by borrowing constraints in college, the marginal bene�t of additional �nancial aid decreases

substantially.

However, despite the fact that both the gradients of marginal and inframarginal enrollees are

�at, the optimal aid is still slightly decreasing in parental income. This is because, once the

correlations of parental income with marginal and inframarginal students have been shut down,

the di�erences in marginal social welfare weights play a role. We �nd that at the �at �nancial aid

schedule, the marginal social welfare weight of the poorest children is roughly 20% higher than

that of the richest students. Essentially, given that enrollment is so unresponsive to �nancial

aid, the social planner allocates �nancial aid to agents with the highest marginal social welfare

weights. This leads to a slightly progressive �nancial aid schedule.

Equalizing parental transfers on top of this removes these di�erences in marginal social welfare

weights and therefore leads to an �at optimal aid schedule.

6 Robustness and Additional Results

6.1 The Role of Borrowing Constraints

Figure 11(a) shows the optimal �nancial aid policies when we have abolished borrowing con-

straints. We �rst remove borrowing constraints and keep the current �nancial aid system. This

will increase college enrollment and imply a windfall �scal gain for the government. In a second
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(a) Inframarginal Graduates (b) Marginal Students

Figure 9: Model-Based Decomposition for Marginal and Inframarginal Students at Flat Grant
Schedule with Removal of Borrowing Constraints

Notes: We plot the share of college enrollees and marginal college enrollees given a �at �nancial aid

schedule for di�erent model speci�cations. We assume no subsidized Sta�ord loans for all speci�cations.

The solid red line represent the full model at the �at �nancial aid schedule. For the dashed black line

we simulate a model version for which we remove the correlation between ability and parental income.

For the dashed-dotted blue line we simulate a model version for which we additionally remove the

correlation between the psychic costs and parental education. For the dotted pink line we simulate a

model version for which on top removes any riskiness; i.e. education decisions are made under perfect

foresight. For the dashed green line with circles we simulate a model version for which on top we

remove all borrowing constraints. For the turquoise line with crosses we simulate a model version for

which set parental transfers to the mean parental transfers in the data, conditional on education.

step, we choose optimal �nancial aid but restrict the government to not use this windfall gain.

Figure 11(b), shows the implied graduate patterns.

6.2 Varying Borrowing Constraints

To get a sense of how varying borrowing constraints would a�ect our main conclusions, we have

re-estimated a version of the model in which the borrowing limit depends on parental resources.

Here, it was very hard for us to get guidance on what would be a reasonable way to have exogenous

borrowing constraints depend on parental income and ability of the child. Hence, we have decided

to report a very simple and transparent case in the paper: we assume that children whose both

parents have a college degree can borrow twice the amount of the Sta�ord loan limit. Admittedly,

this is ad-hoc in two ways. The �rst ad-hoc decision is to separate children along the parental

education dimension. Our motivation was that parental education strongly correlates with both

parental earnings and child's ability. The second ad-hoc decision we faced was: how much more

can these children with highly educated parents borrow? We here decided to just double the
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Figure 10: Optimal Financial Aid for Di�erent Model Speci�cations

Notes: For each model speci�cation (see Figure 9), we illustrate the respective optimal �nancial aid

schedule.

amount in the case that we report. The optimal utilitarian �nancial aid with parental education

dependent borrowing constraints are shown in Figure 12. The shape is slightly di�erent from

the baseline optimal schedule, as changes in the borrowing constraints lead to changes share of

marginal students.22 However, the optimal �nancial aid is still highly progressive.

6.3 Details: Endogenous Ability

We assume that initial ability θ0 is distributed as:

ln θ0 = β0 + β1 ln I + u

where u is normally distributed. We choose β0, β1, and the variance of u to match the mean and

variance of log childhood ability and covariance of log childhood ability and log parental income

from Agostinelli and Wiswall (2016).

We need to calibrate the parameters of the childhood ability production function:

1. A- TFP of parental production function.

2. γ1 - weight on initial ability

3. γ2 - weight on parental investment

4. γ3 - interaction term

22As we have shown earlier, relaxing borrowing constraints for all students reduces the progressivity of the
optimal aid schedule. That force is still present here, as some low income students have two college educated
parents. However, this force is partially muted by the fact that parental education is increasing in parental income.
As such, the optimal aid schedule here is more progressive than the case with relaxed borrowing constraints for all
individuals, but slightly less progressive than the baseline case with equal borrowing constraints for all students.
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(a) Financial Aid (b) Graduation Rates

Figure 11: Financial Aid and Graduation with Free Borrowing

Notes: The dashed-dotted (blue) line shows the optimal schedule with no borrowing constraints.

Optimal �nancial aid with a Utilitarian welfare function and with borrowing constraints and current

�nancial aid are also shown for comparison in Panel (a). In Panel (b) we display the college graduation

share by parental income group for each of the three scenarios.

5. σι - variance of ι.

Agostinelli and Wiswall (2016) estimate a translog production function of the following form:

ln θt+1 = lnAt + γ1t ln θt + γ2t ln It + γ3t ln θt · ln It + ηθ,t

for t = 0, 1, 2, 3. By combining these four equations, we can derive a single equation for end of

childhood ability ln θ4 as a function of initial ability ln θ0, parental investment in each period ln It,

the yearly shocks ηθ,t, and the technology parameters.

Speci�cally, after some algebra we can write

ln θ4 = ln θ0 (γ30 ln I0 + γ10) (γ13 + γ33 ln I1) (γ12 + γ32 ln I2) (γ11 + γ31 ln I1) + f(I, A, γ)

where f(I, A, γ) is a function that depends on investment and the other parameters but not

directly on initial ability ln θ0.

We can further rearrange this equation to yield

ln θ4 = γ̃ ln θ0 + g (θ0, I0, I1, I2, I3) + f(I, A, γ)

where

γ̃ = γ10γ11γ12γ13
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Figure 12: Optimal Financial Aid with Parental Education Dependent Borrowing Constraints

Notes: The dashed-dotted (blue) line shows the optimal schedule with parental income dependent

borrowing constraints. Optimal �nancial aid with in the baseline case and current �nancial aid are also

shown for comparison in Panel (a). In Panel (b) we display the college graduation share by parental

income group for each of the three scenarios.

and

g (θ0, I0, I1, I2, I3) = ln θ0 (γ30 ln I0 + γ10) (γ13 + γ33 ln I1) (γ12 + γ32 ln I2) (γ11 + γ31 ln I1)− γ̃ ln θ0

We set γ1 equal to the product of the coe�cients on lagged ability from Agostinelli and Wiswall

(2016) γ1,1γ1,2γ1,3γ1,4 ≈ 2. This approximation will be true if the terms on the interaction terms

in Agostinelli and Wiswall (2016) are close to zero. Agostinelli and Wiswall (2016) estimate

γ30 = −0.105(0.066), γ31 = −0.005(0.019), γ32 = −0.003(0.013), γ33 = 0.003(0.010). None of the

estimates are statistically di�erent from 0 at 95% con�dence level and only the �rst one at a 90%

con�dence level. Therefore, we think calibrating γ1 = 2 seems like a reasonable choice.

Then we have four parameters, A, γ2, σ
ι, and γ3. We choose these parameters to match the

four following moments:

1. Mean of θ

2. Variance of θ

3. Covariance of θ and parental income I.

4. From Agostinelli and Wiswall (2016): The e�ect on realized years of schooling of a monetary

transfer to parents is roughly ten times larger for parents in the 10th percentile of the income

distribution compared to those in the 90th percentile.

Loosely speaking, the covariance of θ and I helps to pin down the importance of parental

monetary investments γ2. The variance of θ helps to pin down the variance to shock of ability
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production, σι. The di�erential e�ect of monetary transfers for rich and poor parents helps to

pin down the interaction between parental investment and initial ability, γ3. Finally, the average

ability level helps to discipline the TFP of the production function, γ1.

Finally, we need to translate these measures of �nal ability, which are in the units used in

Agostinelli and Wiswall (2016) into our measure of ability, which is based on AFQT scores. Let

θ̂ represent end of childhood ability as measured in the units used in Agostinelli and Wiswall

(2016). We assume that our measures of ability θ is a linear projection of this log skill measure

θ = α0 + α1 ln θ̂

where we choose α1 and α0 to match the mean and variance of our AFQT measure. Therefore,

when we simulate the model, we �rst simulate childhood ability in the units used in Agostinelli

and Wiswall (2016). Then we translate the measures of ability in Agostinelli and Wiswall (2016)

to the ability measures we use in this paper.

Dahl and Lochner (2012) use changes in the EITC to instrument for family income and �nd

that a $1000 increase in family income leads to an increase in ability scores by 6% of a standard

deviation. Increasing yearly family income of parents by $1,000 in our model leads to an average

increase in AFQT scores of 2.2% of a standard deviation across all children, and an increase of

5.1% of a standard deviation for children in the lowest income quintile.

Changes in Childhood Ability Figure 13 shows the change in the relationship between

parental income and ability as a result of switching from the current �nancial aid system to the

optimal system with endogenous ability. Ability is measured in percentiles of AFQT scores where

percentiles are evaluated at their current levels. We can see that switching to the optimal aid

schedule leads to substantial increases in child ability, especially for children in the lower end of

the parental income distribution.

6.4 Endogenous Ability with Parental Borrowing Constraints

One issue with the preceding analysis is that we have assumed that parents do not face borrowing

constraints. Poor parents may be borrowing constrained while their children are young and

therefore may not be able to increase investment in their children in response to changes in

�nancial aid. To explore how borrowing constraints would a�ect the optimal policy, we assume

that P% of parents without a college education cannot increase their investment in their children

while the remainder of parents may choose their investment level without this constraint.23 The

optimal policy for a range of values of P is displayed in Figure 14. We can see that the optimal

23Caucutt and Lochner (2017) �nd that 20% of parents with a high school degree and young children are
borrowing constrained. Of course, borrowing constraints will also a�ect the investment decisions of parents who
are not at the borrowing limit.
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Figure 13: Ability Levels with Endogenous Ability
Notes: This �gure shows the relationship between parental income and ability in the optimal system

with endogenous ability and under the current �nancial aid system. Ability is measured in percentiles of

the AFQT distribution before �nancial aid is re-optimized.

progressivity of the system decreases as we increase the percentage of low-education families who

are borrowing constrained. However, the optimal schedule remains more progressive than the

current schedule in all cases.

6.5 General Equilibrium E�ects on Wages

Our analysis abstracted from general equilibrium e�ects on relative wages. Accounting for these

e�ects would imply that the e�ects of �nancial aid on enrollment might be mitigated in the long

run: if more individuals go to college, the college wage premium should be expected to decrease

because of an increase in the supply of college educated labor (Katz and Murphy, 1992). This in

turn would mitigate the initial enrollment increase. To investigate the role of general equilibrium

e�ects on our results, we recalculate the optimal �nancial aid schedule under the assumption

that wages are determined in equilibrium. We assume �rms use a CES production function

that combines total e�ciency units of labor supplied by skilled and unskilled workers, implying

that wages are determined by the ratio of skilled to unskilled labor. We assume an elasticity of

substitution between skilled and unskilled workers of 2.

We assume identical perfectly competitive �rms use CES production functions which combine

skilled and unskilled labor. Therefore, wages are determined as a function of the ratio of the total

skilled labor to the total unskilled labor.

Let PU and P S denote the endogenously determined e�ciency wages for unskilled and skilled

workers, respectively, where skilled workers are those with a college degree and unskilled workers

are high school graduates. We allocate half of college dropouts to each of the skill groups, as

is common in the literature (e.g. Card and Lemieux (2001)). Suppose an agent's wages can be

written as the product of her e�ciency wage and her quantity of e�ciency units of labor supplied:

40



wit = P skHit, where sk ∈ {unskilled, skilled} denotes skill level and Hit denotes agent i's level

of human capital.24

We assume perfectly competitive labor markets. Production at the representative �rm is a

CES function combining skilled and unskilled labor:

Y = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)σ/(σ−1)

where A is total factor productivity, λ is the factor intensity of skilled labor, and σ is the elasticity

of substitution between skilled and unskilled labor. We assume σ = 2. S and U represent the

total amount of human capital units supplied by skilled and unskilled workers. We assume the

economy is in a long run steady-state equilibrium, and that the economy consists of identical

overlapping cohorts. Therefore, as cohorts are identical, the total labor supply in the steady-

state equilibrium is equal to the total amount of labor supplied over the life-cycle for a given

cohort.

Therefore, we can write:

S =
∑
i

∑
t

Hit`itI (ski = skilled)

and

U =
∑
i

∑
t

Hit`itI (ski = unskilled)

.

E�ciency wages are given by the �rst order conditions of the �rm's pro�t maximization

problem:

P S = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)1/(σ−1)
λS−1/σ

and

PU = A
(
λS(σ−1)/σ + (1− λ)U (σ−1)/σ

)1/(σ−1)
(1− λ)U−1/σ.

These two functions determine wages endogenously as functions of labor supply.

The optimal �nancial aid schedule and graduation rates with general equilibrium wages are

shown in Figures 15(a) and 15(b). We can see that the overall amount of aid has decreased

slightly as the �scal externality of college has been scaled down by general equilibrium wage

e�ects. However, the optimal aid schedule with endogenous wages is just as progressive as in the

case with exogenous wages. Thus, while general equilibrium wages dampen the e�ectiveness of

24We normalize units of human capital such that Hit = 1 is an e�ciency unit of labor is de�ned as the labor
supplied by a male worker whose log wages at age 18 are equal to the constant of the wage equation. Therefore,
the constants of the wage functions for skilled and unskilled workers are equal to the logs of the e�ciency wages
for skilled and unskilled workers.
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�nancial aid overall, they do not lead to dramatic changes in the relative bene�t of �nancial aid

increases for students of di�erent parental income levels. Hence, whereas the overall (average)

generosity of the optimal �nancial aid schedule is slightly lower, the implications for how �nancial

aid should vary with parental income are unchanged.25

6.6 Jointly Optimal Financial Aid and

Income Taxation

The size of the �scal externality of college education depends on the tax and transfer system in

place. Our structural estimates took the current US tax system as given. An interesting question

to ask is how optimal subsidies change when the tax schedule is chosen optimally. To address this,

we enrich the optimal policy space such that the planner can also pick a nonlinear tax function

T (y) as is standard in the public �nance literature (Piketty and Saez, 2013).26

Figure 16(a) displays optimal average tax rates in the optimal as well as in the current US

system. Average tax rates are higher for most part of the income distribution. As Figure 16(b)

shows, this is driven by higher marginal tax rates throughout but especially at the bottom of the

distribution, a familiar result from the literature (Diamond and Saez, 2011). In unreported results,

we �nd that the direct e�ect of taxes on enrollment decisions, which we discussed in Section 3, is

very small. In particular, it does not overturn the optimal U-shaped pattern of optimal tax rates

nor does it in�uence the optimal top tax rate which is still mainly determined by the interaction

of the labor supply elasticity and the Pareto parameter of the income distribution (Saez, 2001).

Figure 17(a) illustrates optimal �nancial aid in the presence of the optimal tax schedule.

First, notice that �nancial aid is signi�cantly higher on average compared to the case with the

current US tax code. Higher income tax rates increase the �scal externality, which increases the

optimal level of the college subsidy (i.e. �nancial aid). Second, strikingly, the progressivity of

optimal �nancial aid policies is preserved. Progressive taxation does not change the desirability

of progressive �nancial aid policies.

6.7 Merit-Based Financial Aid

Up to now, we have assumed that the merit-based element of �nancial aid policies stays una�ected.

We now allow the government to optimally choose the gradient in merit and parental income.

Figure 18(a) shows that � if optimally targeted also in terms of merit � �nancial aid policies can

25Our results are, hence, consistent with the important earlier paper(s) by Heckman et al. (1998). They �nd
that GE e�ects dampen the e�ectiveness of tuition subsidies, and in our case the average level of �nancial aid is
also a�ected.

26We abstract from education dependent taxation; for such cases please see Findeisen and Sachs (2016) and
Stantcheva (2017).
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be more generous. The progressive nature however is even slightly reinforced. Figure 18(b) shows

how optimal �nancial aid is increasing in AFQT. Interestingly, the slope is almost independent

of parental income.

7 Computation of Optimal Policies

We begin by introducing some new notation to ease exposition. We write the current �nancial

aid function as G0 (X, I). Let X̄ denote the vector of median values of X and G0 (I) = G0
(
X̄, I

)
be the �nancial aid schedule faced by agents with the median values of X. In practice, this refers

to agents with the median ability. Then we can write the current aid schedule as

G0 (X, I) = G0 (I)︸ ︷︷ ︸
Need Based

+ Ĝ0 (X, I)︸ ︷︷ ︸
Merit Based

where we will refer to G0 (I) as the �need-based� component of the current aid schedule and

Ĝ0 (X, I) as the �merit-based� component of the current aid schedule, where we normalize Ĝ0
(
X, I

)
=

0. For all of the counterfactuals, except when we jointly optimize need and merit-based aid, we

will optimize over the need-based component while holding the merit-based component at the

current level Ĝ0 (X, I). That is, given an alternative need-based component Gk (I), the �nancial

aid schedule is given by

Gk
(
X̄, I

)
= Gk (I) + Ĝ0 (X, I) .

We will choose the need-based component that solves the government's problem. For the

remainder of this section, we will refer to Gk (I) as the ��nancial aid schedule� as shorthand for

the full �nancial aid schedule:

Gk (X, I) = Gk (I) + Ĝ0 (X, I) .

Further, let:

• Ūk (I) =
∫
χ

max{V E(X, I), V H(X, I)}k̃(X, I)dX denote the Pareto weighted sum of ex-

pected lifetime utility of agents with parental income level I given the �nancial aid schedule

Gk (I).

• NT kNPV (I) denote the sum of the net-present value of net tax (taxes minus grants) paid

by agents with parental income level I given the �nancial aid schedule Gk (I).

• For all optimal aid calculations we discretize parental income I. Let I denote the set of

discretized income values. For ease of exposition and with some abuse of notation, we will

use I ∈ I to denote the discretized values of parental income.
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• We will write the government's Lagrange function as

L
(
Gk (I) , λ

)
=
∑
I∈I

Ūk (I)− λ

(∑
I∈I

NT kNPV (I)− F̄

)

7.1 Baseline

1. Calculate the exogenous government revenue requirement. Given the current aid schedule

G0 (I), we calculate the total net tax payments
∑

I∈I NT
0

NPV (I). The exogenous govern-

ment revenue requirement is then given by F̄ =
∑

I∈I NT
0

NPV (I).

2. Guess a value of the Lagrange multiplier. Denote this guess as λ̂.

3. Given the current guess of λ̂, make an initial guess of the need-based aid schedule.

4. Denote the guess of the need-based aid schedule by k. Calculate the sum of utility Ūk (I)

and NT kNPV (I) for each income level given k.

5. We now perturb the aid schedule to calculate the numerical derivatives of utility and net

tax payments with respect to �nancial aid. Let G k̂ (I) = Gk (I) + ε. Calculate the sum of

utility Ū k̂ (I) and NT k̂NPV (I) for each income level given k̂.

6. Calculate the vector of numerical derivatives of the government's problem with respect to

�nancial aid given multiplier λ̂, evaluated at Gk (I). We can write this as:

∆L
(
Gk (I) , λ̂

)
ε

=
Ū k̂ (I)− Ūk (I)

ε
− λ̂NT

k̂

NPV (I)−NT kNPV (I)

ε

7. Check if each element of
∆L(Gk(I)λ̂)

ε
equals 0. If not, update the guess of Gk (I) and go back

to step 4. If so, move on to the next step.

8. Given the current guess of λ̂ and the current guess of the �nancial aid schedule Gk (I), check

if the government's budget constraint holds with equality (F̄ =
∑

I∈I N̄ T
k
NPV (I)). If the

budget does not balance, update the guess of λ̂ and return to step 3. If the budget balances,

then Gk (I) maximizes the governments problem.

7.2 No taste for redistribution

We follow a similar procedure to the baseline case with one adjustment. With no taste for

redistribution, we set the marginal welfare weights to be constant across all individuals. A

transfer of ε to an inframarginal agent is therefore valued by the social planner as Cε, where C is

the constant marginal welfare weight. We normalize C = 1 without loss of generality. Therefore,

if the government increases �nancial aid by ε for a given income group I, the increase in social
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welfare is simply equal to the total discounted years of schooling of agents in income level I. We

denote the total discounted years of schooling of agents in income level I under the �nancial aid

schedule indexed by k as Ẽk (I). Therefore, we again search for the value of the multiplier λ̂ and

the �nanicial aid schedule Gk (I) to maximize the social planner's objective subject to the budget

constraint. We perform the same procedure as in the baseline case, except we replace step 6 with

the following:

6' Calculate the vector of numerical derivatives of the government's problem with respect to

�nancial aid given multiplier λ̂, evaluated, at Gk (I). We can write this as:

∆L
(
Gk (I) λ̂

)
ε

= Ẽk (I)− λ̂N̄ T
k̂
NPV (I)− N̄T kNPV (I)

ε

Note that, while we set C to be constant across individuals, we still choose the Lagrange multiplier

λ̂ to balance the government's budget constraint. Therefore 1

λ̂
gives the money-metric marginal

social welfare weight.

7.3 Revenue Maximizing Government

In this case, the government chooses the �nancial aid schedule that maximizes
∑

I∈I N̄ T
k
NPV (I).

We start with an initial guess of the �nancial aid schedule. Denote this by Gk (I).

1. Denote the guess of the need-based aid schedule by k. Calculate N̄ T kNPV (I) for each income

level given k.

2. Perturb the aid schedule to calculate the numerical derivative of net tax payments with re-

spect to �nancial aid. Let G k̂ (I) = Gk (I)+ε. Again calculate the sum of utility N̄ T k̂NPV (I)

for each income level given k̂.

3. Calculate the vector of numerical derivatives of the government's problem with respect to

�nancial aid at Gk (I). This is given by:

N̄ T k̂NPV (I)− N̄T kNPV (I)

ε

4. Check if each element of N̄T
k̂
NPV (I)−N̄T kNPV (I)

ε
equals 0. If not, update the guess of Gk (I)

and go back to step 4. If so, then Gk (I) maximizes the governments problem.

7.4 Alternative Environments

In Section 6.1 we calculate the optimal �nancial aid policy under the assumption that borrowing

constraints are relaxed and in Section 5.2 we calculate the optimal policy under a number of
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di�erent assumptions about the environment. For each of these alternative environments we

perform the same procedure as in the baseline case under the di�erent assumptions about the

economic environment.

One point warrants emphasis. Given an alternative environment, we recalculate the exogenous

government revenue requirement. That is, letting q index alternative environments, we calculate

the exogenous revenue require as F̄q =
∑

I∈I N̄ T
0
NPV,q (I), where N̄ T 0

NPV,q (I) is the total net

tax payments of agents in income level I, given the environment q and the baseline �nancial aid

schedule. We then calculate the optimal aid schedule given the environment q and the revenue

requirement F̄q.
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(a) Financial Aid (b) Graduation Rates

(c) Ability Levels

Figure 14: Financial Aid, Graduation and Ability Levels with Endogenous Ability and Parental
Borrowing Constraints
Notes: In Panel (a), each line shows the optimal �nancial aid with endogenous ability when P percent

of low-education parents are borrowing constrained and therefore cannot adjust their child's ability in

response to changes in �nancial aid. In Panel (b) we display the college graduation share for each of

these scenarios. Panel (c) shows the relationship between parental income and ability in each scenario.

Ability is measured in percentiles of the AFQT distribution before �nancial aid is re-optimized.
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(a) Financial Aid (b) Graduation Rates

Figure 15: Financial Aid and Graduation with General Equilibrium Wages
Notes: The dashed-dotted (blue) line shows the optimal schedule when wages are determined in equilib-

rium. Production is CES between skilled and unskilled workers with an elasticity of substitution of 2.

Optimal �nancial aid with exogenous wage rates and current �nancial aid are also shown for comparison

in Panel (a). In Panel (b) we display the college graduation share by parental income group for each of

the three scenarios.

(a) Average Tax Rates (b) Marginal Tax Rates

Figure 16: Optimal versus Current: Average and Marginal Tax Rates
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(a) Financial Aid (b) Graduation Rates

Figure 17: Financial Aid and Graduation with Optimal Tax Schedule

Notes: The dashed-dotted (blue) line shows the optimal schedule when the tax schedule is also chosen

optimally. Optimal �nancial aid with the current tax schedule and current �nancial aid are also shown

for comparison in Panel (a). In Panel (b) we display the college graduation share by parental income

group for each of the three scenarios.

(a) Financial Aid (b) Illustration of Optimal Merit Based Element

Figure 18: Optimal Need and Merit Based Financial Aid

Notes: The dashed-dotted (blue) line shows the optimal �nancial aid for students with median ability

as a function of income when the merit-based component of �nancial aid is also chosen optimally.

Optimal �nancial aid with exogenous wage rates and current �nancial aid are also shown for

comparison in Panel (a). In Panel (b) the merit based component of the optimal aid schedule.
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